Suppr超能文献

使用机器学习模型预测接受全髋关节和膝关节置换术的老年患者术后输血情况。

Predicting Postoperative Blood Transfusion in Elderly Patients Undergoing Total Hip and Knee Arthroplasty Using Machine Learning Models.

作者信息

Liang Dan, Pang Yiming, Huang Jingrui, Che Xianda, Zhou Raorao, Ding Xueting, Wang Chunfang, Zhao Litao, Han Yichen, Rong Xueqin, Li Pengcui

机构信息

Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.

Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.

出版信息

Risk Manag Healthc Policy. 2025 May 21;18:1697-1711. doi: 10.2147/RMHP.S503286. eCollection 2025.

Abstract

PURPOSE

With the aging population, the demand for total hip arthroplasty (THA) and total knee arthroplasty (TKA) has risen significantly. Elderly patients, especially those over 70 years, face a higher risk of perioperative bleeding and transfusion, increasing morbidity and mortality. Accurate transfusion risk prediction is vital for optimizing perioperative blood management. Traditional models often fail to capture complex factor interactions, whereas machine learning enhances predictive accuracy. This study aimed to develop predictive models for postoperative transfusion in elderly patients undergoing THA or TKA, identify key risk factors, and create an online prediction tool.

PATIENTS AND METHODS

We retrospectively analyzed 1,520 elderly patients who underwent THA (659) or TKA (861). The Least Absolute Shrinkage and Selection Operator (LASSO) method was used for variable selection. The dataset was randomly split into training (70%) and testing (30%) sets. Five models-Logistic Regression (LR), Random Forest (RF), Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Naive Bayes (NB)-were developed and validated. Ten-fold cross-validation and grid search optimized model parameters. Model performance was evaluated using AUC, accuracy, precision, sensitivity, specificity, and F1 score. SHapley Additive exPlanations (SHAP) were applied to assess variable importance. An online tool was developed based on the models.

RESULTS

Nineteen variables were retained. RF, LR, and SVM showed superior performance with AUC values exceeding 0.90. RF achieved the best results, with an accuracy of 0.86, precision of 0.80, specificity of 0.91, F1-score of 0.78, and sensitivity of 0.76. SHAP analysis highlighted intraoperative blood loss, hypertension, and postoperative drainage volume as major predictors.

CONCLUSION

The developed models and online tool support personalized transfusion risk assessment, optimizing perioperative management, optimizing blood utilization, and enhancing patient outcomes.

摘要

目的

随着人口老龄化,全髋关节置换术(THA)和全膝关节置换术(TKA)的需求显著增加。老年患者,尤其是70岁以上的患者,面临更高的围手术期出血和输血风险,这会增加发病率和死亡率。准确的输血风险预测对于优化围手术期血液管理至关重要。传统模型往往无法捕捉复杂的因素相互作用,而机器学习可提高预测准确性。本研究旨在开发THA或TKA老年患者术后输血的预测模型,识别关键风险因素,并创建一个在线预测工具。

患者与方法

我们回顾性分析了1520例接受THA(659例)或TKA(861例)的老年患者。采用最小绝对收缩和选择算子(LASSO)方法进行变量选择。数据集被随机分为训练集(70%)和测试集(30%)。开发并验证了五个模型——逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)、K近邻(KNN)和朴素贝叶斯(NB)。十折交叉验证和网格搜索优化了模型参数。使用AUC、准确性、精确性、敏感性、特异性和F1分数评估模型性能。应用SHapley加性解释(SHAP)来评估变量的重要性。基于这些模型开发了一个在线工具。

结果

保留了19个变量。RF、LR和SVM表现出卓越的性能,AUC值超过0.90。RF取得了最佳结果,准确性为0.86,精确性为0.80,特异性为0.91,F1分数为0.78,敏感性为0.76。SHAP分析突出了术中失血、高血压和术后引流量是主要预测因素。

结论

所开发的模型和在线工具支持个性化输血风险评估,优化围手术期管理,优化血液利用,并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a191/12103858/9581d2f585dd/RMHP-18-1697-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验