Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, P. R. China.
Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, P. R. China.
ACS Appl Mater Interfaces. 2023 Jun 28;15(25):30870-30879. doi: 10.1021/acsami.3c06601. Epub 2023 Jun 14.
Two-photon polymerization based direct laser writing (DLW) is an emerging micronano 3D fabrication technology wherein two-photon initiators (TPIs) are a key component in photoresists. Upon exposure to a femtosecond laser, TPIs can trigger the polymerization reaction, leading to the solidification of photoresists. In other words, TPIs directly determine the rate of polymerization, physicochemical properties of polymers, and even the photolithography feature size. However, they generally exhibit extremely poor solubility in photoresist systems, severely inhibiting their application in DLW. To break through this bottleneck, we propose a strategy to prepare TPIs as liquids via molecular design. The maximum weight fraction of the as-prepared liquid TPI in photoresist significantly increases to 2.0 wt %, which is several times higher than that of commercial 7-diethylamino-3-thenoylcoumarin (DETC). Meanwhile, this liquid TPI also exhibits an excellent absorption cross section (64 GM), allowing it to absorb femtosecond laser efficiently and generate abundant active species to initiate polymerization. Remarkably, the respective minimum feature sizes of line arrays and suspended lines are 47 and 20 nm, which are comparable to that of the-state-of-the-art electron beam lithography. Besides, the liquid TPI can be utilized to fabricate various high-quality 3D microstructures and manufacture large-area 2D devices at a considerable writing speed (1.045 m s). Therefore, the liquid TPI would be one of the promising initiators for micronano fabrication technology and pave the way for future development of DLW.
双光子聚合的直接激光写入(DLW)是一种新兴的微纳 3D 制造技术,其中双光子引发剂(TPIs)是光致抗蚀剂中的关键组成部分。在飞秒激光照射下,TPIs 可以引发聚合反应,导致光致抗蚀剂固化。换句话说,TPIs 直接决定聚合速率、聚合物的物理化学性质,甚至光刻特征尺寸。然而,它们通常在光致抗蚀剂体系中的溶解度极差,严重限制了它们在 DLW 中的应用。为了突破这一瓶颈,我们提出了一种通过分子设计将 TPI 制备为液体的策略。所制备的液体 TPI 在光致抗蚀剂中的最大重量分数显著增加到 2.0wt%,是商业 7-二乙氨基-3-噻吩酰基香豆素(DETC)的几倍。同时,这种液体 TPI 还具有优异的吸收截面(64 GM),能够有效地吸收飞秒激光并产生丰富的活性物质来引发聚合。值得注意的是,线阵和悬置线的最小特征尺寸分别为 47nm 和 20nm,与最先进的电子束光刻相当。此外,液体 TPI 可用于制造各种高质量的 3D 微结构,并以相当高的写入速度(1.045m/s)制造大面积 2D 器件。因此,液体 TPI 将成为微纳制造技术中极具前途的引发剂之一,为 DLW 的未来发展铺平道路。