Cao Chun, Xia Xianmeng, Shen Xiaoming, Wang Xiaobing, Yang Zhenyao, Liu Qiulan, Ding Chenliang, Zhu Dazhao, Kuang Cuifang, Liu Xu
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
Research Center for Astronomical Computing, Zhejiang Lab, Hangzhou, 311121, China.
Nat Commun. 2024 Oct 25;15(1):9216. doi: 10.1038/s41467-024-52929-8.
As a basic component of the versatile semiconductor devices, metal oxides play a critical role in modern electronic information industry. However, ultra-high precision nanopatterning of metal oxides often involves multi-step lithography and transfer process, which is time-consuming and costly. Here, we report a strategy, using metal-organic compounds as solid precursor photoresist for multi-photon lithography and post-sintering, to realize ultra-high precision additive manufacturing of metal oxides. As a result, we gain metal oxides including ZnO, CuO and ZrO with a critical dimension of 35 nm, which sets a benchmark for additive manufacturing of metal oxides. Besides, atomic doping can be easily accomplished by including the target element in precursor photoresist, and heterogeneous structures can also be created by multiple multi-photon lithography, allowing this strategy to accommodate the requirements of various semiconductor devices. For instance, we fabricate an ZnO photodetector by the proposed strategy.
作为多功能半导体器件的基本组成部分,金属氧化物在现代电子信息产业中发挥着关键作用。然而,金属氧化物的超高精度纳米图案化通常涉及多步光刻和转移过程,既耗时又昂贵。在此,我们报告一种策略,即使用金属有机化合物作为用于多光子光刻和后烧结的固体前驱体光致抗蚀剂,以实现金属氧化物的超高精度增材制造。结果,我们获得了临界尺寸为35纳米的包括氧化锌、氧化铜和氧化锆在内的金属氧化物,这为金属氧化物的增材制造设定了一个基准。此外,通过在前驱体光致抗蚀剂中加入目标元素可以轻松实现原子掺杂,并且通过多次多光子光刻还可以创建异质结构,从而使该策略能够满足各种半导体器件的要求。例如,我们通过所提出的策略制造了一个氧化锌光电探测器。