黏附通过协调突出和细胞外基质重塑来调节速度和持久性。
Adhesion tunes speed and persistence by coordinating protrusions and extracellular matrix remodeling.
机构信息
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
出版信息
Dev Cell. 2023 Aug 7;58(15):1414-1428.e4. doi: 10.1016/j.devcel.2023.05.013. Epub 2023 Jun 14.
Cell migration through 3D environments is essential to development, disease, and regeneration processes. Conceptual models of migration have been developed primarily on the basis of 2D cell behaviors, but a general understanding of 3D cell migration is still lacking due to the added complexity of the extracellular matrix. Here, using a multiplexed biophysical imaging approach for single-cell analysis of human cell lines, we show how the subprocesses of adhesion, contractility, actin cytoskeletal dynamics, and matrix remodeling integrate to produce heterogeneous migration behaviors. This single-cell analysis identifies three modes of cell speed and persistence coupling, driven by distinct modes of coordination between matrix remodeling and protrusive activity. The framework that emerges establishes a predictive model linking cell trajectories to distinct subprocess coordination states.
细胞在三维环境中的迁移对于发育、疾病和再生过程至关重要。迁移的概念模型主要是基于二维细胞行为建立的,但由于细胞外基质的复杂性增加,对三维细胞迁移的总体理解仍然缺乏。在这里,我们使用一种用于单细胞分析的多重生物物理成像方法,展示了细胞黏附、收缩、肌动蛋白细胞骨架动力学和基质重塑等亚过程如何整合,从而产生异质的迁移行为。这种单细胞分析确定了三种细胞速度和持久力耦合模式,由基质重塑和突起活性之间不同的协调模式驱动。所出现的框架建立了一个预测模型,将细胞轨迹与不同的亚过程协调状态联系起来。