Chen Kevin, Ozturk Kivilcim, Contreras Ryne L, Simon Jessica, McCann Sean, Chen Wei Ji, Carter Hannah, Fraley Stephanie I
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA.
iScience. 2020 Dec 26;24(1):101991. doi: 10.1016/j.isci.2020.101991. eCollection 2021 Jan 22.
To better understand cellular communication driving diverse behaviors, we need to uncover the molecular mechanisms of within-cell-type functional heterogeneity. While single-cell RNA sequencing (scRNAseq) has advanced our understanding of cell heterogeneity, linking individual cell phenotypes to transcriptomic data remains challenging. Here, we used a phenotypic cell sorting technique to ask whether phenotypically supervised scRNAseq analysis (pheno-scRNAseq) can provide more insight into heterogeneous cell behaviors than unsupervised scRNAseq. Using a simple 3D breast cancer (BRCA) model, we conducted pheno-scRNAseq on invasive and non-invasive cells and compared the results to phenotype-agnostic scRNAseq analysis. Pheno-scRNAseq identified unique and more selective differentially expressed genes than unsupervised scRNAseq analysis. Functional studies validated the utility of pheno-scRNAseq in understanding within-cell-type functional heterogeneity and revealed that migration phenotypes were coordinated with specific metabolic, proliferation, stress, and immune phenotypes. This approach lends new insight into the molecular systems underlying BRCA cell phenotypic heterogeneity.
为了更好地理解驱动多种行为的细胞通讯,我们需要揭示细胞类型内功能异质性的分子机制。虽然单细胞RNA测序(scRNAseq)增进了我们对细胞异质性的理解,但将单个细胞表型与转录组数据联系起来仍然具有挑战性。在这里,我们使用一种表型细胞分选技术来探究,与无监督scRNAseq相比,表型监督的scRNAseq分析(pheno-scRNAseq)是否能为异质性细胞行为提供更多见解。利用一个简单的三维乳腺癌(BRCA)模型,我们对侵袭性和非侵袭性细胞进行了pheno-scRNAseq,并将结果与不考虑表型的scRNAseq分析进行比较。与无监督scRNAseq分析相比,pheno-scRNAseq鉴定出了独特且更具选择性的差异表达基因。功能研究验证了pheno-scRNAseq在理解细胞类型内功能异质性方面的效用,并揭示迁移表型与特定的代谢、增殖、应激和免疫表型相互协调。这种方法为BRCA细胞表型异质性的分子系统提供了新的见解。