文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

eSPRESSO:单细胞转录组学数据的拓扑聚类,揭示细胞时空结构的信息基因。

eSPRESSO: topological clustering of single-cell transcriptomics data to reveal informative genes for spatio-temporal architectures of cells.

机构信息

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.

Life Sciences, IBM Consulting, IBM Japan Ltd., 19-21 Nihonbashi Hakozaki-cho , Chuo-ku, Tokyo, 103-8510, Japan.

出版信息

BMC Bioinformatics. 2023 Jun 15;24(1):252. doi: 10.1186/s12859-023-05355-4.


DOI:10.1186/s12859-023-05355-4
PMID:37322439
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10268514/
Abstract

BACKGROUND: Bioinformatics capability to analyze spatio-temporal dynamics of gene expression is essential in understanding animal development. Animal cells are spatially organized as functional tissues where cellular gene expression data contain information that governs morphogenesis during the developmental process. Although several computational tissue reconstruction methods using transcriptomics data have been proposed, those methods have been ineffective in arranging cells in their correct positions in tissues or organs unless spatial information is explicitly provided. RESULTS: This study demonstrates stochastic self-organizing map clustering with Markov chain Monte Carlo calculations for optimizing informative genes effectively reconstruct any spatio-temporal topology of cells from their transcriptome profiles with only a coarse topological guideline. The method, eSPRESSO (enhanced SPatial REconstruction by Stochastic Self-Organizing Map), provides a powerful in silico spatio-temporal tissue reconstruction capability, as confirmed by using human embryonic heart and mouse embryo, brain, embryonic heart, and liver lobule with generally high reproducibility (average max. accuracy = 92.0%), while revealing topologically informative genes, or spatial discriminator genes. Furthermore, eSPRESSO was used for temporal analysis of human pancreatic organoids to infer rational developmental trajectories with several candidate 'temporal' discriminator genes responsible for various cell type differentiations. CONCLUSIONS: eSPRESSO provides a novel strategy for analyzing mechanisms underlying the spatio-temporal formation of cellular organizations.

摘要

背景:分析基因表达时空动态的生物信息学能力对于理解动物发育至关重要。动物细胞作为具有功能的组织进行空间组织,细胞的基因表达数据包含了在发育过程中控制形态发生的信息。尽管已经提出了几种使用转录组数据进行计算组织重建的方法,但除非提供空间信息,否则这些方法在将细胞排列在组织或器官的正确位置方面一直效果不佳。

结果:本研究展示了随机自组织映射聚类与马尔可夫链蒙特卡罗计算相结合,可有效优化信息基因,仅用粗略的拓扑指南即可从转录组谱中重建任何细胞的时空拓扑。该方法 eSPRESSO(通过随机自组织映射进行增强的空间重建)提供了强大的计算机时空组织重建能力,通过使用人类胚胎心脏和小鼠胚胎、大脑、胚胎心脏和肝小叶进行验证,具有普遍较高的重现性(平均最大准确性=92.0%),同时揭示了拓扑信息基因或空间鉴别基因。此外,eSPRESSO 还用于人类胰腺类器官的时间分析,以推断出由负责各种细胞类型分化的几个候选“时间”鉴别基因决定的合理发育轨迹。

结论:eSPRESSO 为分析细胞组织时空形成的机制提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/10268514/82711efa3b80/12859_2023_5355_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/10268514/565bbc3486b3/12859_2023_5355_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/10268514/94eb92d031f8/12859_2023_5355_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/10268514/024d57929338/12859_2023_5355_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/10268514/82711efa3b80/12859_2023_5355_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/10268514/565bbc3486b3/12859_2023_5355_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/10268514/94eb92d031f8/12859_2023_5355_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/10268514/024d57929338/12859_2023_5355_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f6/10268514/82711efa3b80/12859_2023_5355_Fig4_HTML.jpg

相似文献

[1]
eSPRESSO: topological clustering of single-cell transcriptomics data to reveal informative genes for spatio-temporal architectures of cells.

BMC Bioinformatics. 2023-6-15

[2]
Novel computational model of gastrula morphogenesis to identify spatial discriminator genes by self-organizing map (SOM) clustering.

Sci Rep. 2019-8-29

[3]
Molecular networks involved in mouse cerebral corticogenesis and spatio-temporal regulation of Sox4 and Sox11 novel antisense transcripts revealed by transcriptome profiling.

Genome Biol. 2009-10-2

[4]
Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development.

PLoS Genet. 2019-9-25

[5]
STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data.

Comput Biol Chem. 2024-10

[6]
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST.

Nat Commun. 2023-3-1

[7]
Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.

Brief Bioinform. 2024-5-23

[8]
Unraveling Spatial Domain Characterization in Spatially Resolved Transcriptomics with Robust Graph Contrastive Clustering.

Bioinformatics. 2024-7-16

[9]
Computational solutions for spatial transcriptomics.

Comput Struct Biotechnol J. 2022-9-1

[10]
Benchmarking cell-type clustering methods for spatially resolved transcriptomics data.

Brief Bioinform. 2023-1-19

本文引用的文献

[1]
Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.

Nat Commun. 2022-12-10

[2]
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

Cell. 2022-5-12

[3]
Squidpy: a scalable framework for spatial omics analysis.

Nat Methods. 2022-2

[4]
SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network.

Nat Methods. 2021-11

[5]
Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells.

Nat Commun. 2021-6-24

[6]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

[7]
Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner.

Nat Commun. 2021-1-4

[8]
Somatostatin analogues for the treatment of hyperinsulinaemic hypoglycaemia.

Ther Adv Endocrinol Metab. 2020-12-2

[9]
Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2.

Nat Biotechnol. 2021-3

[10]
Cells of the adult human heart.

Nature. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索