Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
Life Sciences, IBM Consulting, IBM Japan Ltd., 19-21 Nihonbashi Hakozaki-cho , Chuo-ku, Tokyo, 103-8510, Japan.
BMC Bioinformatics. 2023 Jun 15;24(1):252. doi: 10.1186/s12859-023-05355-4.
BACKGROUND: Bioinformatics capability to analyze spatio-temporal dynamics of gene expression is essential in understanding animal development. Animal cells are spatially organized as functional tissues where cellular gene expression data contain information that governs morphogenesis during the developmental process. Although several computational tissue reconstruction methods using transcriptomics data have been proposed, those methods have been ineffective in arranging cells in their correct positions in tissues or organs unless spatial information is explicitly provided. RESULTS: This study demonstrates stochastic self-organizing map clustering with Markov chain Monte Carlo calculations for optimizing informative genes effectively reconstruct any spatio-temporal topology of cells from their transcriptome profiles with only a coarse topological guideline. The method, eSPRESSO (enhanced SPatial REconstruction by Stochastic Self-Organizing Map), provides a powerful in silico spatio-temporal tissue reconstruction capability, as confirmed by using human embryonic heart and mouse embryo, brain, embryonic heart, and liver lobule with generally high reproducibility (average max. accuracy = 92.0%), while revealing topologically informative genes, or spatial discriminator genes. Furthermore, eSPRESSO was used for temporal analysis of human pancreatic organoids to infer rational developmental trajectories with several candidate 'temporal' discriminator genes responsible for various cell type differentiations. CONCLUSIONS: eSPRESSO provides a novel strategy for analyzing mechanisms underlying the spatio-temporal formation of cellular organizations.
背景:分析基因表达时空动态的生物信息学能力对于理解动物发育至关重要。动物细胞作为具有功能的组织进行空间组织,细胞的基因表达数据包含了在发育过程中控制形态发生的信息。尽管已经提出了几种使用转录组数据进行计算组织重建的方法,但除非提供空间信息,否则这些方法在将细胞排列在组织或器官的正确位置方面一直效果不佳。
结果:本研究展示了随机自组织映射聚类与马尔可夫链蒙特卡罗计算相结合,可有效优化信息基因,仅用粗略的拓扑指南即可从转录组谱中重建任何细胞的时空拓扑。该方法 eSPRESSO(通过随机自组织映射进行增强的空间重建)提供了强大的计算机时空组织重建能力,通过使用人类胚胎心脏和小鼠胚胎、大脑、胚胎心脏和肝小叶进行验证,具有普遍较高的重现性(平均最大准确性=92.0%),同时揭示了拓扑信息基因或空间鉴别基因。此外,eSPRESSO 还用于人类胰腺类器官的时间分析,以推断出由负责各种细胞类型分化的几个候选“时间”鉴别基因决定的合理发育轨迹。
结论:eSPRESSO 为分析细胞组织时空形成的机制提供了一种新策略。
Comput Biol Chem. 2024-10
Comput Struct Biotechnol J. 2022-9-1
Brief Bioinform. 2023-1-19
Nat Methods. 2022-2
Cell. 2021-6-24
Ther Adv Endocrinol Metab. 2020-12-2
Nat Biotechnol. 2021-3
Nature. 2020-12