Suppr超能文献

基于条件生成对抗网络与跨域正则化的 SPECT 成像低剂量图像重建。

Low-dose sinogram restoration enabled by conditional GAN with cross-domain regularization in SPECT imaging.

机构信息

School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China.

出版信息

Math Biosci Eng. 2023 Mar 24;20(6):9728-9758. doi: 10.3934/mbe.2023427.

Abstract

In order to generate high-quality single-photon emission computed tomography (SPECT) images under low-dose acquisition mode, a sinogram denoising method was studied for suppressing random oscillation and enhancing contrast in the projection domain. A conditional generative adversarial network with cross-domain regularization (CGAN-CDR) is proposed for low-dose SPECT sinogram restoration. The generator stepwise extracts multiscale sinusoidal features from a low-dose sinogram, which are then rebuilt into a restored sinogram. Long skip connections are introduced into the generator, so that the low-level features can be better shared and reused, and the spatial and angular sinogram information can be better recovered. A patch discriminator is employed to capture detailed sinusoidal features within sinogram patches; thereby, detailed features in local receptive fields can be effectively characterized. Meanwhile, a cross-domain regularization is developed in both the projection and image domains. Projection-domain regularization directly constrains the generator via penalizing the difference between generated and label sinograms. Image-domain regularization imposes a similarity constraint on the reconstructed images, which can ameliorate the issue of ill-posedness and serves as an indirect constraint on the generator. By adversarial learning, the CGAN-CDR model can achieve high-quality sinogram restoration. Finally, the preconditioned alternating projection algorithm with total variation regularization is adopted for image reconstruction. Extensive numerical experiments show that the proposed model exhibits good performance in low-dose sinogram restoration. From visual analysis, CGAN-CDR performs well in terms of noise and artifact suppression, contrast enhancement and structure preservation, particularly in low-contrast regions. From quantitative analysis, CGAN-CDR has obtained superior results in both global and local image quality metrics. From robustness analysis, CGAN-CDR can better recover the detailed bone structure of the reconstructed image for a higher-noise sinogram. This work demonstrates the feasibility and effectiveness of CGAN-CDR in low-dose SPECT sinogram restoration. CGAN-CDR can yield significant quality improvement in both projection and image domains, which enables potential applications of the proposed method in real low-dose study.

摘要

为了在低剂量采集模式下生成高质量的单光子发射计算机断层成像(SPECT)图像,研究了一种在投影域中用于抑制随机波动和增强对比度的谱线去噪方法。提出了一种具有跨域正则化的条件生成对抗网络(CGAN-CDR),用于低剂量 SPECT 谱线重建。生成器逐步从低剂量谱线中提取多尺度正弦特征,然后将其重建为重建谱线。生成器中引入了长跳跃连接,以便更好地共享和重用低水平特征,并更好地恢复空间和角度谱线信息。采用补丁鉴别器捕获谱线补丁内的详细正弦特征;从而可以有效地描述局部感受野中的详细特征。同时,在投影域和图像域中开发了跨域正则化。投影域正则化通过惩罚生成和标记谱线之间的差异,直接对生成器施加约束。图像域正则化对重建图像施加相似性约束,这可以改善不适定性问题,并对生成器施加间接约束。通过对抗学习,CGAN-CDR 模型可以实现高质量的谱线重建。最后,采用带全变差正则化的预处理交替投影算法进行图像重建。大量数值实验表明,所提出的模型在低剂量谱线重建中表现出良好的性能。从视觉分析上看,CGAN-CDR 在抑制噪声和伪影、增强对比度和保持结构方面表现良好,特别是在低对比度区域。从定量分析上看,CGAN-CDR 在全局和局部图像质量指标上都取得了较好的结果。从稳健性分析上看,CGAN-CDR 可以更好地恢复重建图像的详细骨骼结构,以应对更高噪声的谱线。这项工作证明了 CGAN-CDR 在低剂量 SPECT 谱线重建中的可行性和有效性。CGAN-CDR 可以在投影域和图像域中都显著提高质量,这使得该方法在实际低剂量研究中的潜在应用成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验