Suppr超能文献

评估用于预测表观基因组图谱的深度学习。

Evaluating deep learning for predicting epigenomic profiles.

作者信息

Toneyan Shushan, Tang Ziqi, Koo Peter K

机构信息

Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

出版信息

Nat Mach Intell. 2022 Dec;4(12):1088-1100. doi: 10.1038/s42256-022-00570-9. Epub 2022 Dec 5.

Abstract

Deep learning has been successful at predicting epigenomic profiles from DNA sequences. Most approaches frame this task as a binary classification relying on peak callers to define functional activity. Recently, quantitative models have emerged to directly predict the experimental coverage values as a regression. As new models continue to emerge with different architectures and training configurations, a major bottleneck is forming due to the lack of ability to fairly assess the novelty of proposed models and their utility for downstream biological discovery. Here we introduce a unified evaluation framework and use it to compare various binary and quantitative models trained to predict chromatin accessibility data. We highlight various modeling choices that affect generalization performance, including a downstream application of predicting variant effects. In addition, we introduce a robustness metric that can be used to enhance model selection and improve variant effect predictions. Our empirical study largely supports that quantitative modeling of epigenomic profiles leads to better generalizability and interpretability.

摘要

深度学习在从DNA序列预测表观基因组图谱方面取得了成功。大多数方法将此任务视为基于峰检测工具来定义功能活性的二分类问题。最近,定量模型已出现,可直接将实验覆盖值预测为回归问题。随着具有不同架构和训练配置的新模型不断涌现,由于缺乏公平评估所提出模型的新颖性及其对下游生物学发现的效用的能力,一个主要瓶颈正在形成。在此,我们引入了一个统一的评估框架,并使用它来比较为预测染色质可及性数据而训练的各种二分类和定量模型。我们强调了各种影响泛化性能的建模选择,包括预测变异效应的下游应用。此外,我们引入了一种稳健性度量,可用于加强模型选择并改进变异效应预测。我们的实证研究在很大程度上支持表观基因组图谱的定量建模可带来更好的泛化性和可解释性。

相似文献

1
Evaluating deep learning for predicting epigenomic profiles.评估用于预测表观基因组图谱的深度学习。
Nat Mach Intell. 2022 Dec;4(12):1088-1100. doi: 10.1038/s42256-022-00570-9. Epub 2022 Dec 5.
6
Comparative Study of Deep Generative Models on Chemical Space Coverage.化学空间覆盖的深度生成模型比较研究。
J Chem Inf Model. 2021 Jun 28;61(6):2572-2581. doi: 10.1021/acs.jcim.0c01328. Epub 2021 May 20.

引用本文的文献

6
Gauge fixing for sequence-function relationships.序列-功能关系的规范固定
PLoS Comput Biol. 2025 Mar 20;21(3):e1012818. doi: 10.1371/journal.pcbi.1012818. eCollection 2025.
9
Advancing Regulatory Genomics With Machine Learning.利用机器学习推动监管基因组学发展。
Bioinform Biol Insights. 2024 Dec 24;18:11779322241249562. doi: 10.1177/11779322241249562. eCollection 2024.

本文引用的文献

5
The evolution, evolvability and engineering of gene regulatory DNA.基因调控 DNA 的进化、可进化性与工程。
Nature. 2022 Mar;603(7901):455-463. doi: 10.1038/s41586-022-04506-6. Epub 2022 Mar 9.
6
Decoding gene regulation in the fly brain.解析果蝇大脑中的基因调控。
Nature. 2022 Jan;601(7894):630-636. doi: 10.1038/s41586-021-04262-z. Epub 2022 Jan 5.
9
The dynamic, combinatorial cis-regulatory lexicon of epidermal differentiation.表皮分化的动态、组合顺式调控词汇。
Nat Genet. 2021 Nov;53(11):1564-1576. doi: 10.1038/s41588-021-00947-3. Epub 2021 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验