Microbiome center, Sheba Medical Center, Israel.
Dept. of Computer Science, The Open University of Israel, Israel.
Nucleic Acids Res. 2023 Jul 21;51(13):6593-6608. doi: 10.1093/nar/gkad527.
16S rRNA amplicon sequencing provides a relatively inexpensive culture-independent method for studying microbial communities. Although thousands of such studies have examined diverse habitats, it is difficult for researchers to use this vast trove of experiments when interpreting their own findings in a broader context. To bridge this gap, we introduce dbBact - a novel pan-microbiome resource. dbBact combines manually curated information from studies across diverse habitats, creating a collaborative central repository of 16S rRNA amplicon sequence variants (ASVs), which are assigned multiple ontology-based terms. To date dbBact contains information from more than 1000 studies, which include 1500000 associations between 360000 ASVs and 6500 ontology terms. Importantly, dbBact offers a set of computational tools allowing users to easily query their own datasets against the database. To demonstrate how dbBact augments standard microbiome analysis we selected 16 published papers, and reanalyzed their data via dbBact. We uncovered novel inter-host similarities, potential intra-host sources of bacteria, commonalities across different diseases and lower host-specificity in disease-associated bacteria. We also demonstrate the ability to detect environmental sources, reagent-borne contaminants, and identify potential cross-sample contaminations. These analyses demonstrate how combining information across multiple studies and over diverse habitats leads to better understanding of underlying biological processes.
16S rRNA 扩增子测序为研究微生物群落提供了一种相对廉价的非培养方法。尽管有成千上万这样的研究检查了不同的栖息地,但研究人员在更广泛的背景下解释自己的发现时,很难利用这一大量的实验数据。为了弥合这一差距,我们引入了 dbBact-一种新的泛微生物组资源。dbBact 结合了来自不同栖息地的研究中经过人工整理的信息,创建了一个 16S rRNA 扩增子序列变异体(ASV)的协作中央存储库,这些变异体被赋予了多个基于本体的术语。迄今为止,dbBact 包含了来自 1000 多项研究的信息,其中包括 360000 个 ASV 与 6500 个本体术语之间的 1500000 个关联。重要的是,dbBact 提供了一组计算工具,允许用户轻松地将自己的数据集与数据库进行查询。为了演示 dbBact 如何增强标准微生物组分析,我们选择了 16 篇已发表的论文,并通过 dbBact 重新分析了它们的数据。我们发现了新的宿主间相似性、细菌的潜在宿主内来源、不同疾病之间的共性以及与疾病相关的细菌的宿主特异性较低。我们还展示了检测环境来源、试剂携带污染物以及识别潜在的跨样本污染的能力。这些分析表明,如何结合来自多个研究和不同栖息地的信息,可以更好地理解潜在的生物学过程。