Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, 510006, Guangzhou, China.
National Center for International Research on Green Optoelectronics, South China Normal University, 510006, Guangzhou, China.
Nat Commun. 2023 Jun 16;14(1):3585. doi: 10.1038/s41467-023-39371-y.
Reservoir computing (RC) offers efficient temporal information processing with low training cost. All-ferroelectric implementation of RC is appealing because it can fully exploit the merits of ferroelectric memristors (e.g., good controllability); however, this has been undemonstrated due to the challenge of developing ferroelectric memristors with distinctly different switching characteristics specific to the reservoir and readout network. Here, we experimentally demonstrate an all-ferroelectric RC system whose reservoir and readout network are implemented with volatile and nonvolatile ferroelectric diodes (FDs), respectively. The volatile and nonvolatile FDs are derived from the same Pt/BiFeO/SrRuO structure via the manipulation of an imprint field (E). It is shown that the volatile FD with E exhibits short-term memory and nonlinearity while the nonvolatile FD with negligible E displays long-term potentiation/depression, fulfilling the functional requirements of the reservoir and readout network, respectively. Hence, the all-ferroelectric RC system is competent for handling various temporal tasks. In particular, it achieves an ultralow normalized root mean square error of 0.017 in the Hénon map time-series prediction. Besides, both the volatile and nonvolatile FDs demonstrate long-term stability in ambient air, high endurance, and low power consumption, promising the all-ferroelectric RC system as a reliable and low-power neuromorphic hardware for temporal information processing.
储层计算 (RC) 具有高效的时间信息处理能力,且训练成本低。全铁电实现 RC 很有吸引力,因为它可以充分利用铁电忆阻器的优点(例如,良好的可控性);然而,由于开发具有明显不同开关特性的铁电忆阻器的挑战,这一直未得到证明,这些特性特定于储层和读出网络。在这里,我们通过实验证明了一种全铁电 RC 系统,其储层和读出网络分别由易失性和非易失性铁电二极管 (FD) 实现。易失性和非易失性 FD 是通过操纵压印场 (E) 从相同的 Pt/BiFeO/SrRuO 结构中获得的。结果表明,具有 E 的易失性 FD 表现出短期记忆和非线性,而具有可忽略 E 的非易失性 FD 表现出长期增强/抑制,分别满足储层和读出网络的功能要求。因此,全铁电 RC 系统能够胜任各种时间任务。特别是,它在 Hénon 映射时间序列预测中实现了超低归一化均方根误差 0.017。此外,易失性和非易失性 FD 在环境空气中均表现出长期稳定性、高耐用性和低功耗,有望使全铁电 RC 系统成为可靠且低功耗的用于时间信息处理的神经形态硬件。