Suppr超能文献

一种用于储层计算的双模态记忆有机电化学晶体管实现方案。

A Dual-Modal Memory Organic Electrochemical Transistor Implementation for Reservoir Computing.

作者信息

Yin Yuyang, Wang Shaocong, Weng Ruihong, Xiao Na, Deng Jianni, Wang Qian, Wang Zhongrui, Chan Paddy Kwok Leung

机构信息

Department of Mechanical Engineering The University of Hong Kong Hong Kong SAR China.

Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong SAR China.

出版信息

Small Sci. 2024 Oct 16;5(1):2400415. doi: 10.1002/smsc.202400415. eCollection 2025 Jan.

Abstract

Neuromorphic computing devices offer promising solutions for next-generation computing hardware, addressing the high throughput data processing demands of artificial intelligence applications through brain-mimicking non-von Neumann architecture. Herein, PEDOT:Tos/PTHF-based organic electrochemical transistors (OECTs) with dual-modal memory functions-both short-term and long-term-are demonstrated. By characterizing memory levels and relaxation times, the device has been efficiently manipulated and switched between the two modes through coupled control of pulse voltage and duration. Both short-term and long-term memory functions are integrated within the same device, enabling its use as artificial neurons for the reservoir unit and synapses in the readout layer to build up a reservoir computing (RC) system. The performance of the dynamic neuron and synaptic weight update are benchmarked with classification tasks on hand-written digit images, respectively, both attaining accuracies above 90%. Furthermore, by modulating the device as both reservoir mode and synaptic mode, a full-OECT RC system capable of distinguishing electromyography signals of hand gestures is demonstrated. These results highlight the potential of simplified, homogeneous integration of dual-modal OECTs to form brain-like computing hardware systems for efficient biological signal processing across a broad range of applications.

摘要

神经形态计算设备为下一代计算硬件提供了有前景的解决方案,通过模仿大脑的非冯·诺依曼架构来满足人工智能应用对高吞吐量数据处理的需求。在此,展示了具有短期和长期双模态记忆功能的基于PEDOT:Tos/PTHF的有机电化学晶体管(OECT)。通过表征记忆水平和弛豫时间,该设备已通过对脉冲电压和持续时间的耦合控制在两种模式之间进行了有效操纵和切换。短期和长期记忆功能都集成在同一设备中,使其能够用作储层单元的人工神经元和读出层中的突触,以构建储层计算(RC)系统。动态神经元和突触权重更新的性能分别通过对手写数字图像的分类任务进行基准测试,两者的准确率均达到90%以上。此外,通过将设备调制为储层模式和突触模式,展示了一个能够区分手势肌电信号的全OECT RC系统。这些结果突出了简化、同质集成双模态OECT以形成类似大脑的计算硬件系统在广泛应用中进行高效生物信号处理的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b1c/11935116/07ce2f4c7104/SMSC-5-2400415-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验