Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. Electronic address: https://twitter.com/JeremiahHsia.
Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. Electronic address: https://twitter.com/dpmelters.
J Mol Biol. 2023 Jun 1;435(11):168019. doi: 10.1016/j.jmb.2023.168019. Epub 2023 Jun 16.
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
所有生命形式都能感知和响应机械刺激。在整个进化过程中,生物形成了多样化的机械感知和机械转导途径,从而产生快速和持续的机械响应。机械响应的记忆和可塑性特征被认为是以表观遗传修饰的形式存储的,包括染色质结构的改变。这些在染色质背景下的机械响应在物种之间具有保守的原则,例如器官发生和发育过程中的侧向抑制。然而,目前尚不清楚机械转导机制如何改变染色质结构以实现特定的细胞功能,以及改变的染色质结构是否可以机械地影响环境。在这篇综述中,我们讨论了染色质结构如何通过细胞外途径的环境力量来改变细胞功能,以及染色质结构改变如何能机械地影响核、细胞和细胞外环境的新兴概念。细胞染色质和环境之间的这种双向机械反馈可能具有重要的生理意义,例如在有丝分裂中着丝粒染色质对机械生物学的调控,或在肿瘤-基质相互作用中。最后,我们强调了该领域当前的挑战和未解决的问题,并为未来的研究提供了观点。