Suppr超能文献

不同阴极电池热失效导致的颗粒排放的详细表征。

Detailed characterization of particle emissions due to thermal failure of batteries with different cathodes.

作者信息

Wang Huaibin, Wang Qinzheng, Jin Changyong, Xu Chengshan, Zhao Yanhong, Li Yang, Zhong Chonglin, Feng Xuning

机构信息

China People's Police University, Langfang 065000, China.

China People's Police University, Langfang 065000, China; State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China; Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100084, China.

出版信息

J Hazard Mater. 2023 Sep 15;458:131646. doi: 10.1016/j.jhazmat.2023.131646. Epub 2023 May 15.

Abstract

Sufficient levels of thermal, electrical, mechanical, or electrochemical abuse can cause thermal runaway in lithium-ion batteries, leading to the release of electrolyte vapor, combustible gas mixtures, and high-temperature particles. Particle emissions due to thermal failure of batteries may cause serious pollution of the atmosphere, water sources, and soil as well as enter the human biological chain through crops, posing a potential threat to human health. Furthermore, high-temperature particle emissions may ignite the flammable gas mixtures produced during the thermal runaway process, resulting in combustion and explosions. This research focused on determining the particle size distribution, elemental composition, morphology, and crystal structure of particles released from different cathode batteries after thermal runaway. Accelerated adiabatic calorimetry tests were performed on a fully charged Li(NiCoMn)O battery (NCM111), Li(NiCoMn)O battery (NCM523), and Li(NiCoMn)O battery (NCM622). Results of all three batteries indicate that particles with a diameter less than or equal to 0.85 mm exhibit an increase in volume distribution followed by a decrease in volume distribution as the diameter increases. F, S, P, Cr, Ge, and Ge were detected in particle emissions with mass percentages ranging from 6.5% to 43.3%, 0.76-1.20%, 2.41-4.83%,1.8-3.7%, and 0-0.14%, respectively. When present in high concentrations, these may have negative impacts on human health and the environment. In addition, the diffraction patterns of the particle emissions were approximately the same for NC111, NCM523, and NCM622, with emissions primarily composed of Ni/Co elemental, graphite, LiCO, NiO, LiF, MnO, and LiNiO. This study can provide important insights into the potential environmental and health risks associated with particle emissions from thermal runaway in lithium-ion batteries.

摘要

足够程度的热、电、机械或电化学滥用会导致锂离子电池热失控,从而释放出电解质蒸汽、可燃气体混合物和高温颗粒。电池热失效导致的颗粒排放可能会严重污染大气、水源和土壤,并通过农作物进入人类生物链,对人类健康构成潜在威胁。此外,高温颗粒排放可能会点燃热失控过程中产生的可燃气体混合物,导致燃烧和爆炸。本研究聚焦于确定热失控后不同正极电池释放的颗粒的粒径分布、元素组成、形态和晶体结构。对充满电的锂镍钴锰氧化物电池(NCM111)、锂镍钴锰氧化物电池(NCM523)和锂镍钴锰氧化物电池(NCM622)进行了加速绝热量热测试。所有三个电池的结果表明,直径小于或等于0.85毫米的颗粒,其体积分布先增加,然后随着直径增大而减小。在颗粒排放物中检测到了氟、硫、磷、铬、锗和硒,质量百分比分别为6.5%至43.3%、0.76 - 1.20%、2.41 - 4.83%、1.8 - 3.7%和0 - 0.14%。当这些元素浓度较高时,可能会对人类健康和环境产生负面影响。此外,NCM111、NCM523和NCM622的颗粒排放物的衍射图谱大致相同,排放物主要由镍/钴元素、石墨、碳酸锂、氧化镍、氟化锂、氧化锰和锂镍氧化物组成。这项研究可以为锂离子电池热失控产生的颗粒排放所带来的潜在环境和健康风险提供重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验