Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, Haikou 570228, China.
Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Crop Sciences, Hainan University, Haikou 570228, China.
Aquat Toxicol. 2023 Aug;261:106606. doi: 10.1016/j.aquatox.2023.106606. Epub 2023 Jun 13.
Although ammonium (NH-N) is an important nutrient for plants, increases in soil nitrogen (N) input and atmospheric deposition have made ammonium toxicity a serious ecological problem. In this study, we explored the effects of NH-N stress on the ultrastructure, photosynthesis, and NH-N assimilation of Ottelia cordata (Wallich) Dandy, an endangered heteroblastic plant native to China. Results showed that 15 and 50 mg L NH-N damaged leaf ultrastructure and decreased the values of maximal quantum yield (F/F), maximal fluorescence (F), and relative electron transport rate (rETR) in the submerged leaves of O. cordata. Furthermore, when NH-N was ≥ 2 mg L, phosphoenolpyruvate carboxylase activity (PEPC) and soluble sugar and starch contents decreased significantly. The content of dissolved oxygen in the culture water also decreased significantly. The activity of the NH-N assimilation enzyme glutamine synthetase (GS) significantly increased when NH-N was ≥ 10 mg L and NADH-glutamate synthase (NADH-GOGAT) and Fd-glutamate synthase (Fd-GOGAT) increased when NH-N was at 50 mg L. However, the activity of nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase (NADH-GDH) and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase (NADPH-GDH) did not change, indicating that GS/GOGAT cycle may play an important role in NH-N assimilation in the submerged leaves of O. cordata. These results show that short-term exposure to a high concentration of NH-N is toxic to O. cordata.
虽然铵(NH-N)是植物的重要养分,但土壤氮(N)输入和大气沉降的增加使得铵毒性成为一个严重的生态问题。在这项研究中,我们探讨了 NH-N 胁迫对中国特有濒危异型叶植物菹草(Ottelia cordata(Wallich)Dandy)的叶片超微结构、光合作用和 NH-N 同化的影响。结果表明,15 和 50mg/L NH-N 会损伤菹草叶片的超微结构,降低其沉水叶的最大光化学量子产量(F/Fm)、最大荧光(Fv)和相对电子传递速率(rETR)的值。此外,当 NH-N 浓度≥2mg/L 时,磷酸烯醇式丙酮酸羧化酶(PEPC)活性以及可溶性糖和淀粉含量显著下降,培养液中溶解氧含量也显著降低。当 NH-N 浓度≥10mg/L 时,NH-N 同化酶谷氨酰胺合成酶(GS)活性显著增加,当 NH-N 浓度为 50mg/L 时,NADH-谷氨酸合酶(NADH-GOGAT)和 Fd-谷氨酸合酶(Fd-GOGAT)活性增加,而 NADH-谷氨酸脱氢酶(NADH-GDH)和 NADPH-谷氨酸脱氢酶(NADPH-GDH)的活性没有变化,表明 GS/GOGAT 循环可能在菹草沉水叶的 NH-N 同化中发挥重要作用。这些结果表明,菹草短期暴露于高浓度的 NH-N 是有毒的。