Suppr超能文献

术前 CT 放射组学列线图预测Ⅰ期非小细胞肺癌微血管侵犯

Preoperative CT Radiomics Nomogram for Predicting Microvascular Invasion in Stage I Non-Small Cell Lung Cancer.

机构信息

Department of Radiology, Jinshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China (L.D., H.Z.T., J.Y.W., J.W.Q.).

Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center/Cancer Hospital, Guangzhou, China (Y.W.L., Q.L.).

出版信息

Acad Radiol. 2024 Jan;31(1):46-57. doi: 10.1016/j.acra.2023.05.015. Epub 2023 Jun 16.

Abstract

UNLABELLED

RATIONALE AND OBJECTIVES: This study aims to develop and validate a nomogram integrating clinical-CT and radiomic features for preoperative prediction of microvascular invasion (MVI) in patients with stage I non‑small cell lung cancer (NSCLC).

MATERIALS AND METHODS

This retrospective study analyzed 188 cases of stage I NSCLC (63 MVI positives and 125 negatives), which were randomly assigned to training (n = 133) and validation cohorts (n = 55) at a ratio of 7:3. Preoperative non-contrast and contrast-enhanced CT (CECT) images were used to analyze computed tomography (CT) features and extract radiomics features. The student's t-test, the Mann-Whitney-U test, the Pearson correlation, the least absolute shrinkage and selection operator, and multivariable logistic analysis were used to select the significant CT and radiomics features. Multivariable logistic regression analysis was performed to build the clinical-CT, radiomics, and integrated models. The predictive performances were evaluated through the receiver operating characteristic curve and compared with the DeLong test. The integrated nomogram was analyzed regarding discrimination, calibration, and clinical significance.

RESULTS

The rad-score was developed with one shape and four textural features. The integrated nomogram incorporating radiomics score, spiculation, and the number of tumor-related vessels (TVN) demonstrated better predictive efficacy than the radiomics and clinical-CT models in the training cohort (area under the curve [AUC], 0.893 vs 0.853 and 0.828, and p = 0.043 and 0.027, respectively) and validation cohort (AUC, 0.887 vs 0.878 and 0.786, and p = 0.761 and 0.043, respectively). The nomogram also demonstrated good calibration and clinical usefulness.

CONCLUSION

The radiomics nomogram integrating the radiomics with clinical-CT features demonstrated good performance in predicting MVI status in stage I NSCLC. The nomogram may be a useful tool for physicians in improving personalized management of stage I NSCLC.

摘要

目的

本研究旨在开发并验证一种列线图,该列线图综合了临床 CT 和放射组学特征,用于预测 I 期非小细胞肺癌(NSCLC)患者的微血管侵犯(MVI)。

材料与方法

本回顾性研究分析了 188 例 I 期 NSCLC 患者(63 例 MVI 阳性,125 例 MVI 阴性),按 7:3 的比例随机分配到训练队列(n=133)和验证队列(n=55)。使用术前非增强和增强 CT(CECT)图像分析 CT 特征并提取放射组学特征。采用学生 t 检验、Mann-Whitney-U 检验、Pearson 相关分析、最小绝对收缩和选择算子以及多变量逻辑回归分析筛选出有意义的 CT 和放射组学特征。采用多变量逻辑回归分析建立临床 CT、放射组学和综合模型。通过接受者操作特征曲线评估预测性能,并与 DeLong 检验进行比较。分析综合列线图的判别能力、校准能力和临床意义。

结果

建立了一个包含一个形状和四个纹理特征的 rad-score。在训练队列中,与放射组学模型和临床 CT 模型相比,纳入放射组学评分、分叶状和肿瘤相关血管数(TVN)的综合列线图具有更好的预测效能(曲线下面积 [AUC],0.893 比 0.853 和 0.828,p=0.043 和 0.027),在验证队列中(AUC,0.887 比 0.878 和 0.786,p=0.761 和 0.043)。该列线图还具有良好的校准度和临床实用性。

结论

综合临床 CT 和放射组学特征的放射组学列线图在预测 I 期 NSCLC 的 MVI 状态方面具有良好的性能。该列线图可能是医师改善 I 期 NSCLC 个体化管理的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验