Suppr超能文献

一种基于深度学习的模型,使用循环神经网络长短期记忆网络(RNN-LSTM)从脑电图(EEG)数据中检测精神分裂症。

A deep learning based model using RNN-LSTM for the Detection of Schizophrenia from EEG data.

作者信息

Supakar Rinku, Satvaya Parthasarathi, Chakrabarti Prasun

机构信息

Lincoln University College, Malaysia; Dr. Sudhir Chandra Sur Institute of Technology and Sports Complex, Dumdum, West Bengal, India.

Jadavpur University, Kolkata, West Bengal, India.

出版信息

Comput Biol Med. 2022 Dec;151(Pt A):106225. doi: 10.1016/j.compbiomed.2022.106225. Epub 2022 Oct 19.

Abstract

Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.

摘要

如果能早期诊断,精神分裂症患者可以过上正常生活。脑电图(EEG)携带有关脑网络连通性的信息,可用于检测表明精神分裂症的脑异常。由于深度学习能够自动提取重要特征并进行分类,作者提出了一种基于深度学习的模型,使用循环神经网络长短期记忆网络(RNN-LSTM)来分析EEG信号数据以诊断精神分裂症。所提出的模型在100维长短期记忆网络之上使用了三个全连接层。该研究使用了45名精神分裂症患者和39名健康受试者的EEG信号数据。使用降维算法获得最优特征集,并对两组数据运行分类器。完整特征集和简化特征集分别获得了98%和93.67%的准确率。使用模型性能度量和综合性能度量对模型的稳健性进行了评估。将结果与使用随机森林、支持向量机、FURIA和AdaBoost等传统机器学习分类器获得的结果进行比较,发现所提出的模型在完整数据集上表现更好。与使用卷积神经网络(CNN)或循环神经网络处理同一组数据的研究人员的结果相比,所提出模型的准确率要么更高,要么与之相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验