Zhang Yiqun, Liu Qi, Ren Wenjuan, Song Yangyang, Luo Hua, Han Yangyang, He Liang, Wu Xiaodong, Wang Zhuqing
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China.
Research (Wash D C). 2023 Jun 16;6:0172. doi: 10.34133/research.0172. eCollection 2023.
Natural tactile sensation is complex, which involves not only contact force intensity detection but also the perception of the force direction, the surface texture, and other mechanical parameters. Nevertheless, the vast majority of the developed tactile sensors can only detect the normal force, but usually cannot resolve shear force or even distinguish the directions of the force. Here, we present a new paradigm of bioinspired tactile sensors for resolving both the intensity and the directions of mechanical stimulations via synergistic microcrack-bristle structure design and cross-shaped configuration engineering. The microcrack sensing structure gives high mechanical sensitivity to the tactile sensors, and the synergistic bristle structure further amplifies the sensitivity of the sensors. The cross-shaped configuration engineering of the synergistic microcrack-bristle structure further endows the tactile sensors with good capability to detect and distinguish the directions of the applied mechanical forces. The as-fabricated tactile sensors exhibit a high sensitivity (25.76 N), low detection limit (5.4 mN), desirable stability (over 2,500 cycles), and good capability to resolve both mechanical intensity and directional features. As promising application scenarios, surface texture recognition and biomimetic path explorations are successfully demonstrated with these tactile sensors. This newly proposed tactile sensation strategy and technology have great potential applications in ingenious tactile sensation and construction of various robotic and bionic prostheses with high operational dexterity.
自然触觉感受是复杂的,它不仅涉及接触力强度检测,还包括力的方向、表面纹理以及其他机械参数的感知。然而,绝大多数已开发的触觉传感器只能检测法向力,通常无法分辨剪切力,甚至不能区分力的方向。在此,我们提出一种受生物启发的触觉传感器新范式,通过协同微裂纹 - 刷毛结构设计和十字形配置工程来分辨机械刺激的强度和方向。微裂纹传感结构赋予触觉传感器高机械灵敏度,协同刷毛结构进一步放大了传感器的灵敏度。协同微裂纹 - 刷毛结构的十字形配置工程进一步使触觉传感器具备良好的检测和区分所施加机械力方向的能力。所制备的触觉传感器具有高灵敏度(25.76 N)、低检测限(5.4 mN)、理想的稳定性(超过2500次循环)以及分辨机械强度和方向特征的良好能力。作为有前景的应用场景,利用这些触觉传感器成功展示了表面纹理识别和仿生路径探索。这种新提出的触觉传感策略和技术在灵巧触觉感知以及构建具有高操作灵活性的各种机器人和仿生假肢方面具有巨大的潜在应用价值。