Suppr超能文献

基于量子顺电体SrTiO₃的太赫兹宽频带声子极化激元学

Phonon Polaritonics in Broad Terahertz Frequency Range with Quantum Paraelectric SrTiO.

作者信息

Xu Rui, Lin Tong, Luo Jiaming, Chen Xiaotong, Blackert Elizabeth R, Moon Alyssa R, JeBailey Khalil M, Zhu Hanyu

机构信息

Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.

Applied Physics Graduate Program, Rice University, Houston, TX, 77005, USA.

出版信息

Adv Mater. 2023 Aug;35(32):e2302974. doi: 10.1002/adma.202302974. Epub 2023 Jul 2.

Abstract

Photonics in the frequency range of 5-15 terahertz (THz) potentially open a new realm of quantum materials manipulation and biosensing. This range, sometimes called "the new terahertz gap", is traditionally difficult to access due to prevalent phonon absorption bands in solids. Low-loss phonon-polariton materials may realize sub-wavelength, on-chip photonic devices, but typically operate in mid-infrared frequencies with narrow bandwidths and are difficult to manufacture on a large scale. Here, for the first time, quantum paraelectric SrTiO enables broadband surface phonon-polaritonic devices in 7-13 THz. As a proof of concept, polarization-independent field concentrators are designed and fabricated to locally enhance intense, multicycle THz pulses by a factor of 6 and increase the spectral intensity by over 90 times. The time-resolved electric field inside the concentrators is experimentally measured by THz-field-induced second harmonic generation. Illuminated by a table-top light source, the average field reaches 0.5 GV m over a large volume resolvable by far-field optics. These results potentially enable scalable THz photonics with high breakdown fields made of various commercially available phonon-polariton crystals for studying driven phases in quantum materials and nonlinear molecular spectroscopy.

摘要

频率范围在5至15太赫兹(THz)的光子学有潜力开启量子材料操控和生物传感的全新领域。这个范围有时被称为“新太赫兹间隙”,传统上由于固体中普遍存在的声子吸收带而难以实现。低损耗声子极化激元材料可能实现亚波长片上光子器件,但通常在具有窄带宽的中红外频率下工作,且难以大规模制造。在此,量子顺电体SrTiO首次实现了7至13太赫兹的宽带表面声子极化激元器件。作为概念验证,设计并制造了与偏振无关的场集中器,以将强烈的多周期太赫兹脉冲局部增强6倍,并将光谱强度提高90倍以上。通过太赫兹场诱导二次谐波产生实验测量了集中器内部的时间分辨电场。由桌面光源照射时,平均场在远场光学可分辨的大体积内达到0.5 GV m。这些结果有可能实现由各种商用声子极化激元晶体制成的具有高击穿场的可扩展太赫兹光子学,用于研究量子材料中的驱动相和非线性分子光谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验