Niemann Richarda, Mueller Niclas S, Wasserroth Sören, Lu Guanyu, Wolf Martin, Caldwell Joshua D, Paarmann Alexander
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
Adv Mater. 2024 Aug;36(33):e2312507. doi: 10.1002/adma.202312507. Epub 2024 Jun 28.
Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near-field optical microscopy and far-field reflection spectroscopy. Here, infrared-visible sum-frequency spectro-microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons. The technique simultaneously provides sub-wavelength spatial resolution and highly-resolved spectral resonance information. This is implemented by resonantly exciting polaritons using a tunable infrared laser and wide-field microscopic detection of the upconverted light. The technique is employed to image hybridization and strong coupling of localized and propagating surface phonon polaritons in a metasurface of SiC micropillars. Spectro-microscopy allows to measure the polariton dispersion simultaneously in momentum space by angle-dependent resonance imaging, and in real space by polariton interferometry. Notably, it is possible to directly image how strong coupling affects the spatial localization of polaritons, inaccessible with conventional spectroscopic techniques. The formation of edge states is observed at excitation frequencies where strong coupling prevents polariton propagation into the metasurface. The technique is applicable to the wide range of polaritonic materials with broken inversion symmetry and can be used as a fast and non-perturbative tool to image polariton hybridization and propagation.
声子极化激元能够实现红外光的波导和局域化,具有极高的限制和低损耗。此类极化激元的空间传播和光谱共振通常采用近场光学显微镜和远场反射光谱等互补技术进行探测。在此,红外-可见和频光谱显微镜被引入作为声子极化激元光谱成像的工具。该技术同时提供亚波长空间分辨率和高分辨率光谱共振信息。这是通过使用可调谐红外激光共振激发极化激元并对倍频光进行宽场显微镜检测来实现的。该技术用于对碳化硅微柱超表面中局域和传播的表面声子极化激元的杂化和强耦合进行成像。光谱显微镜能够通过角度相关共振成像在动量空间中同时测量极化激元色散,并通过极化激元干涉测量在实空间中进行测量。值得注意的是,有可能直接成像强耦合如何影响极化激元的空间局域化,这是传统光谱技术无法实现的。在强耦合阻止极化激元传播到超表面的激发频率处观察到边缘态的形成。该技术适用于具有反演对称性破缺的广泛极化激元材料,并且可以用作成像极化激元杂化和传播的快速且非微扰的工具。