Suppr超能文献

基于合金结构和电子特征工程的准确高效机器学习模型,用于预测析氢反应催化剂。

Accurate and efficient machine learning models for predicting hydrogen evolution reaction catalysts based on structural and electronic feature engineering in alloys.

机构信息

School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China.

Blockchain Development and Research Institute, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China.

出版信息

Nanoscale. 2023 Jul 6;15(26):11072-11082. doi: 10.1039/d3nr01442h.

Abstract

Predictive materials design of high-performance alloy electrocatalysts is a grand challenge in hydrogen production water electrolysis. The vast combinatorial space of element substitutions in alloy electrocatalysts offers a wealth of candidate materials, but presents a significant challenge in terms of experimental and computational exploration of all possible options. Recent scientific and technological developments in machine learning (ML) have offered a new opportunity to accelerate such electrocatalyst materials design. Herein, by incorporating both the electronic and structural properties of alloys, we are able to construct accurate and efficient ML models and predict high-performance alloy catalysts for the hydrogen evolution reaction (HER). We have identified the light gradient boosting (LGB) algorithm as the best-performed method, with an excellent coefficient of determination () value reaching 0.921 and the corresponding root-mean-square error (RMSE) being 0.224 eV. The average marginal contributions of alloy features towards Δ values are estimated to determine the importance of various features during the prediction processes. Our results indicate that both the electronic properties of constituent elements and the structural adsorption site features play the most critical roles in the Δ prediction. Furthermore, 84 potential alloys with |Δ| values less than 0.1 eV are successfully screened out of 2290 candidates selected from the Material Project (MP) database. It is reasonable to expect that the ML models with structural and electronic feature engineering developed in this work would provide new insights in future electrocatalyst developments for the HER and other heterogeneous reactions.

摘要

高性能合金电催化剂的预测性材料设计是制氢水电解中的一个重大挑战。合金电催化剂中元素替代的组合空间非常庞大,为候选材料提供了丰富的选择,但在实验和计算探索所有可能的选择方面也带来了巨大的挑战。最近机器学习 (ML) 的科学和技术发展为加速这种电催化剂材料设计提供了新的机会。在此,我们通过结合合金的电子和结构特性,构建了准确有效的 ML 模型,并预测了用于析氢反应 (HER) 的高性能合金催化剂。我们发现,轻梯度提升 (LGB) 算法的性能最佳,其决定系数 () 值达到 0.921,相应的均方根误差 (RMSE) 为 0.224 eV。通过估计合金特征对 Δ 值的平均边际贡献来确定在预测过程中各种特征的重要性。我们的研究结果表明,组成元素的电子特性和结构吸附位特征在 Δ 值预测中起着最关键的作用。此外,从材料项目 (MP) 数据库中筛选出的 2290 个候选物中,成功筛选出了 84 种具有 |Δ| 值小于 0.1 eV 的潜在合金。有理由期望,本工作中开发的具有结构和电子特征工程的 ML 模型将为 HER 和其他多相反应的未来电催化剂开发提供新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验