Suppr超能文献

机器学习驱动的用于选择性CO加氢制甲醇的合金基催化剂高通量筛选

Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO Hydrogenation to Methanol.

作者信息

Roy Diptendu, Mandal Shyama Charan, Pathak Biswarup

机构信息

Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.

出版信息

ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56151-56163. doi: 10.1021/acsami.1c16696. Epub 2021 Nov 17.

Abstract

The revolutionary development of machine learning and data science and exploration of its application in material science are huge achievements of the scientific community in the past decade. In this work, we have reported an efficient approach of machine learning-aided high-throughput screening for finding selective earth-abundant high-entropy alloy-based catalysts for CO to methanol formation using a machine learning algorithm and microstructure model. For this, we have chosen earth-abundant Cu, Co, Ni, Zn, and Mg metals to form various alloy-based compositions (bimetallic, trimetallic, tetrametallic, and high-entropy alloys) for selective CO reduction reaction toward CHOH. Since there are several possible surface microstructures for different alloys, we have used machine learning along with DFT calculations for high-throughput screening of the catalysts. In this study, the stability of various 8-atom fcc periodic (111) surface unit cells has been calculated using the atomic-size difference factor (δ) as well as the ratio taken from Gibbs free energy of mixing (Ω). Thinking about the simplicity and accuracy, microstructure models by considering the neighboring atoms of the adsorption sites and others as Cu atoms have been considered for different adsorption sites (on-top, bridge, and hollow-hcp). Moreover, the adsorption energies of the *H, *O, *CO, *HCO, *HCO, and *HCO intermediates have been predicted using the best fitted algorithm of the training set. The predicted adsorption energies have been screened based on the pure Cu adsorption energy. Furthermore, the screened catalysts have been correlated among different adsorption site microstructures. At the end, we were able to find seven active catalysts, among which two catalysts are CuCoNiZn-based tetrametallic, three catalysts are CuNiZn-based trimetallic, and two catalysts are CuCoZn-based trimetallic alloys. Hence, this work demonstrates not an ultimate but an efficient approach for finding new product-selective catalysts, and we expect that it can be convenient for other similar types of reactions in forthcoming days.

摘要

机器学习和数据科学的革命性发展及其在材料科学中的应用探索是科学界在过去十年取得的巨大成就。在这项工作中,我们报告了一种机器学习辅助的高通量筛选有效方法,该方法使用机器学习算法和微观结构模型来寻找用于将CO转化为甲醇的具有选择性的、地球上储量丰富的高熵合金基催化剂。为此,我们选择了地球上储量丰富的铜、钴、镍、锌和镁金属,以形成各种合金基组合物(双金属、三金属、四金属和高熵合金),用于选择性CO还原反应生成CHOH。由于不同合金存在几种可能的表面微观结构,我们将机器学习与密度泛函理论(DFT)计算相结合,对催化剂进行高通量筛选。在本研究中,使用原子尺寸差异因子(δ)以及混合吉布斯自由能之比(Ω)计算了各种8原子面心立方(fcc)周期性(111)表面晶胞的稳定性。考虑到方法的简单性和准确性,对于不同的吸附位点(顶位、桥位和六方密堆积中空位),通过将吸附位点的相邻原子及其他原子视为铜原子来构建微观结构模型。此外,使用训练集的最佳拟合算法预测了*H、*O、*CO、*HCO、HCO和HCO中间体的吸附能。基于纯铜吸附能对预测的吸附能进行筛选。此外,对筛选出的催化剂在不同吸附位点微观结构之间进行了关联分析。最后,我们找到了七种活性催化剂,其中两种是基于CuCoNiZn的四金属催化剂,三种是基于CuNiZn的三金属催化剂,两种是基于CuCoZn的三金属合金催化剂。因此,这项工作展示了一种寻找新产品选择性催化剂的有效方法,而非终极方法,我们预计在未来几天它将方便用于其他类似类型的反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验