IEEE Trans Med Imaging. 2023 Dec;42(12):3464-3473. doi: 10.1109/TMI.2023.3287361. Epub 2023 Nov 30.
The cornerstone of stroke care is expedient management that varies depending on the time since stroke onset. Consequently, clinical decision making is centered on accurate knowledge of timing and often requires a radiologist to interpret Computed Tomography (CT) of the brain to confirm the occurrence and age of an event. These tasks are particularly challenging due to the subtle expression of acute ischemic lesions and the dynamic nature of their appearance. Automation efforts have not yet applied deep learning to estimate lesion age and treated these two tasks independently, so, have overlooked their inherent complementary relationship. To leverage this, we propose a novel end-to-end multi-task transformer-based network optimized for concurrent segmentation and age estimation of cerebral ischemic lesions. By utilizing gated positional self-attention and CT-specific data augmentation, the proposed method can capture long-range spatial dependencies while maintaining its ability to be trained from scratch under low-data regimes commonly found in medical imaging. Furthermore, to better combine multiple predictions, we incorporate uncertainty by utilizing quantile loss to facilitate estimating a probability density function of lesion age. The effectiveness of our model is then extensively evaluated on a clinical dataset consisting of 776 CT images from two medical centers. Experimental results demonstrate that our method obtains promising performance, with an area under the curve (AUC) of 0.933 for classifying lesion ages ≤ 4.5 hours compared to 0.858 using a conventional approach, and outperforms task-specific state-of-the-art algorithms.
脑卒中治疗的基石是及时的处理,这取决于发病后的时间。因此,临床决策的核心是准确了解发病时间,通常需要放射科医生解读脑部计算机断层扫描(CT)以确认事件的发生和发病时间。这些任务尤其具有挑战性,因为急性缺血性病变的表现较为微妙,且其表现形式具有动态性。自动化工作尚未将深度学习应用于估计病变年龄,也未将这两个任务独立处理,因此忽略了它们之间固有的互补关系。为了利用这一点,我们提出了一种新颖的端到端多任务基于Transformer 的网络,用于同时分割和估计脑缺血病变的年龄。通过利用门控位置自注意力和 CT 特定的数据增强,所提出的方法可以捕捉远程空间依赖关系,同时保持在医学成像中常见的低数据环境下从头开始训练的能力。此外,为了更好地结合多个预测结果,我们通过使用分位数损失来利用不确定性,以方便估计病变年龄的概率密度函数。然后,我们在一个由来自两个医疗中心的 776 张 CT 图像组成的临床数据集上对我们的模型进行了广泛评估。实验结果表明,我们的方法在分类 ≤ 4.5 小时的病变年龄方面表现出了有希望的性能,曲线下面积(AUC)为 0.933,而传统方法的 AUC 为 0.858,优于特定任务的最新算法。