Li Yiju, Wang Tianshuai, Chen Junjie, Peng Xudong, Chen Minghui, Liu Bin, Mu Yongbiao, Zeng Lin, Zhao Tianshou
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
Sci Bull (Beijing). 2023 Jul 15;68(13):1379-1388. doi: 10.1016/j.scib.2023.06.008. Epub 2023 Jun 10.
Lithium (Li) metal with low electrochemical potential and high theoretical capacity is a promising anode material for next-generation batteries. However, the low reversibility and safety problems caused by the notorious dendrite growth significantly impede the development of high-energy-density lithium metal batteries (LMBs). Here, to enable a dendrite-free and highly reversible Li metal anode (LMA), we develop a cytomembrane-inspired artificial layer (CAL) with biomimetic ionic channels using a scalable spread coating method. The negatively charged CAL with uniform intraparticle and interparticle ionic channels facilitates the Li-ion transport and redistributes the Li-ion flux, contributing to stable and homogeneous Li stripping and plating. Furthermore, a robust underneath transition layer with abundant lithiophilic inorganic components is in-situ formed through the transformation of CAL during cycling, which promotes Li-ion diffusion and suppresses the continuous side reactions with the electrolyte. Additionally, the resulting cytomembrane-inspired artificial Janus layer (CAJL) displays an ultrahigh Young's modulus (≥10.7 GPa) to inhibit the dendrite growth. Consequently, the CAJL-protected LMA (Li@CAJL) is stably cycled with a high areal capacity of 10 mAh cm at a high current density of 10 mA cm. More importantly, the effective CAJL modification realizes the stable operation of a practical 429.2 Wh kg lithium-sulfur (Li-S) pouch cell using a low electrolyte/sulfur (E/S) ratio of 3 μL mg. The facile yet effective protection strategy of LMAs can promote the practical application of LMBs.
锂(Li)金属具有低电化学电位和高理论容量,是下一代电池中很有前景的负极材料。然而,由臭名昭著的枝晶生长引起的低可逆性和安全问题严重阻碍了高能量密度锂金属电池(LMB)的发展。在此,为了实现无枝晶且高度可逆的锂金属负极(LMA),我们采用可扩展的涂布方法,开发了一种具有仿生离子通道的细胞膜启发式人工层(CAL)。带负电荷的CAL具有均匀的颗粒内和颗粒间离子通道,有助于锂离子传输并重新分配锂离子通量,有助于实现稳定且均匀的锂剥离和电镀。此外,在循环过程中,通过CAL的转变原位形成了一个具有丰富亲锂无机成分的坚固底层过渡层,这促进了锂离子扩散并抑制了与电解质的持续副反应。此外,所得的细胞膜启发式人工Janus层(CAJL)显示出超高的杨氏模量(≥10.7 GPa)以抑制枝晶生长。因此,CAJL保护的LMA(Li@CAJL)在10 mA cm的高电流密度下以10 mAh cm的高面积容量稳定循环。更重要的是,有效的CAJL改性实现了使用3 μL mg的低电解质/硫(E/S)比的实用429.2 Wh kg锂硫(Li-S)软包电池的稳定运行。LMA简便而有效的保护策略可以促进LMB的实际应用。