Suppr超能文献

眼底自发荧光成像采用红色激发光。

Fundus autofluorescence imaging using red excitation light.

机构信息

Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK.

Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

出版信息

Sci Rep. 2023 Jun 19;13(1):9916. doi: 10.1038/s41598-023-36217-x.

Abstract

Retinal disease accounts significantly for visual impairment and blindness. An important role in the pathophysiology of retinal disease and aging is attributed to lipofuscin, a complex of fluorescent metabolites. Fundus autofluorescence (AF) imaging allows non-invasive mapping of lipofuscin and is a key technology to diagnose and monitor retinal disease. However, currently used short-wavelength (SW) excitation light has several limitations, including glare and discomfort during image acquisition, reduced image quality in case of lens opacities, limited visualization of the central retina, and potential retinal light toxicity. Here, we establish a novel imaging modality which uses red excitation light (R-AF) and overcomes these drawbacks. R-AF images are high-quality, high-contrast fundus images and image interpretation may build on clinical experience due to similar appearance of pathology as on SW-AF images. Additionally, R-AF images may uncover disease features that previously remained undetected. The R-AF signal increases with higher abundance of lipofuscin and does not depend on photopigment bleaching or on the amount of macular pigment. Improved patient comfort, limited effect of cataract on image quality, and lack of safety concerns qualify R-AF for routine clinical monitoring, e.g. for patients with age-related macular degeneration, Stargardt disease, or for quantitative analysis of AF signal intensity.

摘要

视网膜疾病是导致视力损害和失明的重要原因。脂褐素是一种荧光代谢物复合物,在视网膜疾病和衰老的病理生理学中具有重要作用。眼底自发荧光(AF)成像是一种非侵入性的脂褐素定位方法,是诊断和监测视网膜疾病的关键技术。然而,目前使用的短波长(SW)激发光存在一些局限性,包括在图像采集过程中产生眩光和不适感、在存在晶状体混浊的情况下降低图像质量、中央视网膜的可视化程度有限,以及潜在的视网膜光毒性。在这里,我们建立了一种新的成像模式,该模式使用红色激发光(R-AF),克服了这些缺点。R-AF 图像是高质量、高对比度的眼底图像,由于与 SW-AF 图像相似的病理学表现,图像解释可以基于临床经验。此外,R-AF 图像可能揭示以前未被发现的疾病特征。随着脂褐素含量的增加,R-AF 信号增加,并且不依赖于视色素漂白或黄斑色素的含量。R-AF 提高了患者的舒适度,减少了白内障对图像质量的影响,并且不存在安全问题,因此适用于常规临床监测,例如用于年龄相关性黄斑变性、斯塔加特病患者,或用于 AF 信号强度的定量分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acc3/10279676/a7ce9a46f7da/41598_2023_36217_Fig1_HTML.jpg

相似文献

1
Fundus autofluorescence imaging using red excitation light.
Sci Rep. 2023 Jun 19;13(1):9916. doi: 10.1038/s41598-023-36217-x.
2
Lipofuscin-associated photo-oxidative stress during fundus autofluorescence imaging.
PLoS One. 2017 Feb 24;12(2):e0172635. doi: 10.1371/journal.pone.0172635. eCollection 2017.
5
Mutations in GPR143/OA1 and ABCA4 Inform Interpretations of Short-Wavelength and Near-Infrared Fundus Autofluorescence.
Invest Ophthalmol Vis Sci. 2018 May 1;59(6):2459-2469. doi: 10.1167/iovs.18-24213.
6
Age, lipofuscin and melanin oxidation affect fundus near-infrared autofluorescence.
EBioMedicine. 2019 Oct;48:592-604. doi: 10.1016/j.ebiom.2019.09.048. Epub 2019 Oct 21.
7
Lipofuscin and the principles of fundus autofluorescence: a review.
Semin Ophthalmol. 2012 Sep-Nov;27(5-6):197-201. doi: 10.3109/08820538.2012.711415.
8
Fundus autofluorescence and photoreceptor cell rosettes in mouse models.
Invest Ophthalmol Vis Sci. 2014 Jul 11;55(9):5643-52. doi: 10.1167/iovs.14-14136.
9
Macular autofluorescence in eyes with cystoid macula edema, detected with 488 nm-excitation but not with 580 nm-excitation.
Graefes Arch Clin Exp Ophthalmol. 2009 Jun;247(6):729-34. doi: 10.1007/s00417-008-1033-y. Epub 2009 Jan 30.
10
Insights Into PROM1-Macular Disease Using Multimodal Imaging.
Invest Ophthalmol Vis Sci. 2023 Apr 3;64(4):27. doi: 10.1167/iovs.64.4.27.

本文引用的文献

1
Near infrared autofluorescence imaging of retinal pigmented epithelial cells using 663 nm excitation.
Eye (Lond). 2022 Oct;36(10):1878-1883. doi: 10.1038/s41433-021-01754-0. Epub 2021 Aug 30.
2
Fundus Autofluorescence Imaging in Macular Telangiectasia Type 2: MacTel Study Report Number 9.
Am J Ophthalmol. 2021 Aug;228:27-34. doi: 10.1016/j.ajo.2021.03.022. Epub 2021 Mar 26.
3
Wavelength of light and photophobia in inherited retinal dystrophy.
Sci Rep. 2020 Sep 9;10(1):14798. doi: 10.1038/s41598-020-71707-2.
4
Fundus autofluorescence imaging.
Prog Retin Eye Res. 2021 Mar;81:100893. doi: 10.1016/j.preteyeres.2020.100893. Epub 2020 Aug 3.
5
Quantitative Fundus Autofluorescence and Genetic Associations in Macular, Cone, and Cone-Rod Dystrophies.
Ophthalmol Retina. 2020 Jul;4(7):737-749. doi: 10.1016/j.oret.2020.02.009. Epub 2020 Feb 27.
8
Photoreceptor cells as a source of fundus autofluorescence in recessive Stargardt disease.
J Neurosci Res. 2019 Jan;97(1):98-106. doi: 10.1002/jnr.24252. Epub 2018 Apr 27.
9
Lipofuscin-associated photo-oxidative stress during fundus autofluorescence imaging.
PLoS One. 2017 Feb 24;12(2):e0172635. doi: 10.1371/journal.pone.0172635. eCollection 2017.
10
Quantitative Fundus Autofluorescence in Early and Intermediate Age-Related Macular Degeneration.
JAMA Ophthalmol. 2016 Jul 1;134(7):817-24. doi: 10.1001/jamaophthalmol.2016.1475.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验