Suppr超能文献

能带结构可调性——半导体纳米结构中激子的调制:在光催化燃料生成中的表现。

Band-structure tunability the modulation of excitons in semiconductor nanostructures: manifestation in photocatalytic fuel generation.

机构信息

Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.

出版信息

Nanoscale. 2023 Jul 6;15(26):10939-10974. doi: 10.1039/d3nr02116e.

Abstract

Understanding the energetics of electron transfer at the semiconductor interface is crucial for the development of solar harvesting technologies, including photovoltaics, photocatalysis, and solar fuel systems. However, modern artificial photosynthetic materials are not efficient and limited by their fast charge recombination with high binding energy of excitons. Hence, reducing the exciton binding energy can increase the generation of charge carriers, which improve the photocatalytic activities. Extensive research has been dedicated to improving the exciton dissociation efficiency through rational semiconductor design heteroatom doping, vacancy engineering, the construction of heterostructures, and donor-π-acceptor (D-π-A) interfaces to extend the charge carrier migration, promoting the dissociation of excitons. Consequently, functionalized photocatalysts have demonstrated remarkable photocatalytic performances for solar fuel production under visible light irradiation. This review provides the fundamental aspects of excitons in semiconductor nanostructures, having a high binding energy and ultrafast exciton formation together with promising photo-redox properties for solar to fuel conversion application. In particular, this review highlights the significant role of the excitonic effect in the photocatalytic activity of newly developed functional materials and the underlying mechanistic insight for tuning the performance of nanostructured semiconductor photocatalysts for water splitting, CO reduction, and N fixation reactions.

摘要

了解半导体界面处电子转移的能量学对于太阳能收集技术的发展至关重要,包括光电、光催化和太阳能燃料系统。然而,现代人工光合作用材料效率不高,受到激子高结合能导致的快速电荷复合的限制。因此,降低激子结合能可以增加电荷载流子的产生,从而提高光催化活性。已经进行了广泛的研究,通过合理的半导体设计、杂原子掺杂、空位工程、异质结构的构建和供体-π-受体 (D-π-A) 界面来提高激子离解效率,以延长电荷载流子的迁移,促进激子的离解。因此,功能化光催化剂在可见光照射下生产太阳能燃料方面表现出了显著的光催化性能。本综述提供了半导体纳米结构中激子的基本方面,其具有高结合能和超快激子形成以及用于太阳能转化为燃料应用的有前途的光氧化还原性质。特别是,本综述强调了激子效应对新型功能材料光催化活性的重要作用,以及调节纳米结构半导体光催化剂在水分解、CO 还原和 N 固定反应中的性能的潜在机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验