Suppr超能文献

使用 t 分布随机近邻嵌入对固有无序蛋白质的异质构象集合进行聚类。

Clustering Heterogeneous Conformational Ensembles of Intrinsically Disordered Proteins with t-Distributed Stochastic Neighbor Embedding.

机构信息

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.

Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States.

出版信息

J Chem Theory Comput. 2023 Jul 25;19(14):4711-4727. doi: 10.1021/acs.jctc.3c00224. Epub 2023 Jun 20.

Abstract

Intrinsically disordered proteins (IDPs) populate a range of conformations that are best described by a heterogeneous ensemble. Grouping an IDP ensemble into "structurally similar" clusters for visualization, interpretation, and analysis purposes is a much-desired but formidable task, as the conformational space of IDPs is inherently high-dimensional and reduction techniques often result in ambiguous classifications. Here, we employ the t-distributed stochastic neighbor embedding (t-SNE) technique to generate homogeneous clusters of IDP conformations from the full heterogeneous ensemble. We illustrate the utility of t-SNE by clustering conformations of two disordered proteins, Aβ42, and α-synuclein, in their APO states and when bound to small molecule ligands. Our results shed light on ordered substates within disordered ensembles and provide structural and mechanistic insights into binding modes that confer specificity and affinity in IDP ligand binding. t-SNE projections preserve the local neighborhood information, provide interpretable visualizations of the conformational heterogeneity within each ensemble, and enable the quantification of cluster populations and their relative shifts upon ligand binding. Our approach provides a new framework for detailed investigations of the thermodynamics and kinetics of IDP ligand binding and will aid rational drug design for IDPs.

摘要

无规卷曲蛋白质(IDPs)存在于一系列构象中,这些构象最好通过异质集合来描述。将 IDP 集合分组为“结构相似”的簇,以便于可视化、解释和分析,这是一项非常需要但艰巨的任务,因为 IDP 的构象空间本质上是高维的,并且降维技术通常会导致分类不明确。在这里,我们采用 t 分布随机邻居嵌入(t-SNE)技术从全异质集合中生成 IDP 构象的同质簇。我们通过对 Aβ42 和α-突触核蛋白在 apo 状态下以及与小分子配体结合时的构象进行聚类,说明了 t-SNE 的实用性。我们的结果揭示了无序集合中的有序亚态,并为结合模式提供了结构和机制上的见解,这些结合模式赋予了 IDP 配体结合的特异性和亲和力。t-SNE 投影保留了局部邻域信息,对每个集合中的构象异质性提供了可解释的可视化,并能够量化簇的数量及其在配体结合时的相对变化。我们的方法为详细研究 IDP 配体结合的热力学和动力学提供了一个新的框架,并将有助于 IDP 的合理药物设计。

相似文献

1
Clustering Heterogeneous Conformational Ensembles of Intrinsically Disordered Proteins with t-Distributed Stochastic Neighbor Embedding.
J Chem Theory Comput. 2023 Jul 25;19(14):4711-4727. doi: 10.1021/acs.jctc.3c00224. Epub 2023 Jun 20.
2
The sequence-ensemble relationship in fuzzy protein complexes.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2020562118.
3
Ligand clouds around protein clouds: a scenario of ligand binding with intrinsically disordered proteins.
PLoS Comput Biol. 2013;9(10):e1003249. doi: 10.1371/journal.pcbi.1003249. Epub 2013 Oct 3.
4
Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
Chemphyschem. 2013 Sep 16;14(13):3034-45. doi: 10.1002/cphc.201300387. Epub 2013 Jun 21.
7
Ensemble-Based Thermodynamics of the Fuzzy Binding between Intrinsically Disordered Proteins and Small-Molecule Ligands.
J Chem Inf Model. 2020 Oct 26;60(10):4967-4974. doi: 10.1021/acs.jcim.0c00963. Epub 2020 Oct 14.
8
A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
J Biomol NMR. 2016 Dec;66(4):243-257. doi: 10.1007/s10858-016-0073-6. Epub 2016 Nov 14.
9
Spontaneous Switching among Conformational Ensembles in Intrinsically Disordered Proteins.
Biomolecules. 2019 Mar 22;9(3):114. doi: 10.3390/biom9030114.

引用本文的文献

1
Energy Landscapes and Structural Plasticity of Intrinsically Disordered Histones.
J Chem Inf Model. 2025 Aug 25;65(16):8679-8687. doi: 10.1021/acs.jcim.4c02269. Epub 2025 Aug 6.
2
NeuralTSNE: A Python Package for the Dimensionality Reduction of Molecular Dynamics Data Using Neural Networks.
J Chem Inf Model. 2025 Jul 28;65(14):7347-7351. doi: 10.1021/acs.jcim.5c01107. Epub 2025 Jul 14.
3
Ensemble Docking for Intrinsically Disordered Proteins.
J Chem Inf Model. 2025 Jul 14;65(13):6847-6860. doi: 10.1021/acs.jcim.5c00370. Epub 2025 Jun 18.
4
Robustness in biomolecular simulations: Addressing challenges in data generation, analysis, and curation.
Cell Rep Phys Sci. 2025 May 21;6(5). doi: 10.1016/j.xcrp.2025.102566. Epub 2025 Apr 30.
5
Targeting protein disorder: the next hurdle in drug discovery.
Nat Rev Drug Discov. 2025 Jun 9. doi: 10.1038/s41573-025-01220-6.
7
8
The ribonucleoprotein hnRNPA1 mediates binding to RNA and DNA telomeric G-quadruplexes through an RGG-rich region.
J Biol Chem. 2025 May;301(5):108491. doi: 10.1016/j.jbc.2025.108491. Epub 2025 Apr 8.
9
Ensemble docking for intrinsically disordered proteins.
bioRxiv. 2025 Jan 26:2025.01.23.634614. doi: 10.1101/2025.01.23.634614.

本文引用的文献

1
Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma.
Biophys Rev (Melville). 2022 Mar 17;3(1):011306. doi: 10.1063/5.0080512. eCollection 2022 Mar.
2
SOURSOP: A Python Package for the Analysis of Simulations of Intrinsically Disordered Proteins.
J Chem Theory Comput. 2023 Aug 22;19(16):5609-5620. doi: 10.1021/acs.jctc.3c00190. Epub 2023 Jul 18.
3
Conformational Plasticity in α-Synuclein and How Crowded Environment Modulates It.
J Phys Chem B. 2023 May 11;127(18):4032-4049. doi: 10.1021/acs.jpcb.3c00982. Epub 2023 Apr 28.
4
Direct generation of protein conformational ensembles via machine learning.
Nat Commun. 2023 Feb 11;14(1):774. doi: 10.1038/s41467-023-36443-x.
5
Quantitative prediction of ensemble dynamics, shapes and contact propensities of intrinsically disordered proteins.
PLoS Comput Biol. 2022 Sep 9;18(9):e1010036. doi: 10.1371/journal.pcbi.1010036. eCollection 2022 Sep.
6
Molecular Dynamics Simulations and Diversity Selection by Extended Continuous Similarity Indices.
J Chem Inf Model. 2022 Jul 25;62(14):3415-3425. doi: 10.1021/acs.jcim.2c00433. Epub 2022 Jul 14.
7
Structural insights into GABA transport inhibition using an engineered neurotransmitter transporter.
EMBO J. 2022 Aug 1;41(15):e110735. doi: 10.15252/embj.2022110735. Epub 2022 Jul 7.
8
Mass cytometry reveals immune atlas of urothelial carcinoma.
BMC Cancer. 2022 Jun 20;22(1):677. doi: 10.1186/s12885-022-09788-7.
10
Size-and-Shape Space Gaussian Mixture Models for Structural Clustering of Molecular Dynamics Trajectories.
J Chem Theory Comput. 2022 May 10;18(5):3218-3230. doi: 10.1021/acs.jctc.1c01290. Epub 2022 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验