Suppr超能文献

利用差异结合评分鉴定无规卷曲蛋白质中的配体结合位点。

Identification of ligand binding sites in intrinsically disordered proteins with a differential binding score.

机构信息

Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA, 93740, USA.

Department of Pathology and Molecular Medicine, University of California Davis, Davis, CA, 95616, USA.

出版信息

Sci Rep. 2021 Nov 19;11(1):22583. doi: 10.1038/s41598-021-00869-4.

Abstract

Screening ligands directly binding to an ensemble of intrinsically disordered proteins (IDP) to discover potential hits or leads for new drugs is an emerging but challenging area as IDPs lack well-defined and ordered 3D-protein structures. To explore a new IDP-based rational drug discovery strategy, a differential binding score (DIBS) is defined. The basis of DIBS is to quantitatively determine the binding preference of a ligand to an ensemble of conformations specified by IDP versus such preferences to an ensemble of random coil conformations of the same protein. Ensemble docking procedures performed on repeated sampling of conformations, and the results tested for statistical significance determine the preferential ligand binding sites of the IDP. The results of this approach closely reproduce the experimental data from recent literature on the binding of the ligand epigallocatechin gallate (EGCG) to the intrinsically disordered N-terminal domain of the tumor suppressor p53. Combining established approaches in developing a new method to screen ligands against IDPs could be valuable as a screening tool for IDP-based drug discovery.

摘要

筛选直接与一组无规卷曲蛋白质(IDP)结合的配体,以发现潜在的新药物靶点或先导化合物,这是一个新兴但具有挑战性的领域,因为 IDP 缺乏明确和有序的 3D 蛋白质结构。为了探索一种新的基于 IDP 的合理药物发现策略,定义了一个差异结合评分(DIBS)。DIBS 的基础是定量确定配体与 IDP 指定的构象总体相比与相同蛋白质的随机卷曲构象总体的结合偏好。在构象的重复采样上进行总体对接程序,并且对结果进行统计学意义测试,以确定 IDP 的优先配体结合位点。该方法的结果与最近文献中关于配体表没食子儿茶素没食子酸酯(EGCG)与肿瘤抑制因子 p53 的无规卷曲 N 端结构域结合的实验数据密切吻合。将开发针对 IDP 的配体筛选的新方法的既定方法结合起来,可以作为基于 IDP 的药物发现的筛选工具具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2f6/8604960/d8444647b7f9/41598_2021_869_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验