Suppr超能文献

用于神经网络的双端二硫化钼忆阻器及其与二硫化钼晶体管的同质集成

Two-Terminal MoS Memristor and the Homogeneous Integration with a MoS Transistor for Neural Networks.

作者信息

Fu Shuai, Park Ji-Hoon, Gao Hongyan, Zhang Tianyi, Ji Xiang, Fu Tianda, Sun Lu, Kong Jing, Yao Jun

机构信息

Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

Nano Lett. 2023 Jul 12;23(13):5869-5876. doi: 10.1021/acs.nanolett.2c05007. Epub 2023 Jun 20.

Abstract

Memristors are promising candidates for constructing neural networks. However, their dissimilar working mechanism to that of the addressing transistors can result in a scaling mismatch, which may hinder efficient integration. Here, we demonstrate two-terminal MoS memristors that work with a charge-based mechanism similar to that in transistors, which enables the homogeneous integration with MoS transistors to realize one-transistor-one-memristor addressable cells for assembling programmable networks. The homogenously integrated cells are implemented in a 2 × 2 network array to demonstrate the enabled addressability and programmability. The potential for assembling a scalable network is evaluated in a simulated neural network using obtained realistic device parameters, which achieves over 91% pattern recognition accuracy. This study also reveals a generic mechanism and strategy that can be applied to other semiconducting devices for the engineering and homogeneous integration of memristive systems.

摘要

忆阻器是构建神经网络的有潜力的候选者。然而,它们与寻址晶体管不同的工作机制可能导致缩放不匹配,这可能会阻碍高效集成。在此,我们展示了基于电荷机制工作的双端二硫化钼忆阻器,其类似于晶体管中的机制,这使得与二硫化钼晶体管实现均匀集成,以实现用于组装可编程网络的单晶体管单忆阻器可寻址单元。均匀集成的单元在2×2网络阵列中实现,以展示所实现的可寻址性和可编程性。使用获得的实际器件参数在模拟神经网络中评估组装可扩展网络的潜力,其实现了超过91%的模式识别准确率。这项研究还揭示了一种通用机制和策略,可应用于其他半导体器件,用于忆阻系统的工程设计和均匀集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验