Suppr超能文献

氮结合到氮酶的 E-E 态。

N binding to the E-E states of nitrogenase.

机构信息

Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.

出版信息

Dalton Trans. 2023 Jul 4;52(26):9104-9120. doi: 10.1039/d3dt00648d.

Abstract

Nitrogenase is the only enzyme that can convert N into NH. The reaction requires the addition of eight electrons and protons to the enzyme and the mechanism is normally described by nine states, E-E, differing in the number of added electrons. Experimentally, it is known that three or four electrons need to be added before the enzyme can bind N. We have used combined quantum mechanical and molecular mechanics methods to study the binding of N to the E-E states of nitrogenase, using four different density functional theory (DFT) methods. We test many different structures for the E-E states and study binding both to the Fe2 and Fe6 ions of the active-site FeMo cluster. Unfortunately, the results depend quite strongly on the DFT methods. The TPSS method gives the strongest bonding and prefers N binding to Fe6. It is the only method that reproduces the experimental observation of unfavourable binding to the E-E states and favourable binding to E and E. The other three methods give weaker binding, preferably to Fe2. B3LYP strongly favours structures with the central carbide ion triply protonated. The other three methods suggest that states with the S2B ligand dissociated from either Fe2 or Fe6 are competitive for the E-E states. Moreover, such structures with two hydride ions both bridging Fe2 and Fe6 are the best models for E and also for the N-bound E and E states. However, for E, other structures are often close in energy, structures with one of the hydride ions bridging instead Fe3 and Fe7. Finally, we find no support for the suggestion that reductive elimination of H from the two bridging hydride ions in the E state would enhance the binding of N.

摘要

固氮酶是唯一能够将 N 转化为 NH 的酶。该反应需要向酶中添加 8 个电子和质子,其机制通常通过 9 种状态(E-E)来描述,这些状态在添加的电子数量上有所不同。实验上已知,酶在能够结合 N 之前需要添加三个或四个电子。我们使用组合量子力学和分子力学方法来研究氮结合到固氮酶的 E-E 状态,使用了四种不同的密度泛函理论(DFT)方法。我们测试了 E-E 状态的许多不同结构,并研究了对活性位点 FeMo 簇的 Fe2 和 Fe6 离子的结合。不幸的是,结果强烈依赖于 DFT 方法。TPSS 方法给出了最强的键合作用,并优先选择 N 与 Fe6 结合。它是唯一一种能够重现对 E-E 状态不利结合而对 E 和 E 有利结合的实验观察的方法。其他三种方法给出的键合较弱,更倾向于与 Fe2 结合。B3LYP 强烈支持中心碳化物离子三重质子化的结构。其他三种方法表明,S2B 配体从 Fe2 或 Fe6 中解离的状态对 E-E 状态具有竞争力。此外,这种结构带有两个氢化物离子同时桥接 Fe2 和 Fe6,是 E 以及与 N 结合的 E 和 E 状态的最佳模型。然而,对于 E 来说,其他结构的能量通常相近,结构中只有一个氢化物离子桥接 Fe3 和 Fe7。最后,我们没有发现任何支持 E 状态中两个桥接氢化物离子中 H 的还原消除会增强 N 结合的建议的证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验