Vecchietti Julia, Pérez-Bailac Patricia, Lustemberg Pablo G, Fornero Esteban L, Pascual Laura, Bosco Marta V, Martínez-Arias Arturo, Ganduglia-Pirovano M Verónica, Bonivardi Adrian L
Instituto de Desarrollo Tecnológico para la Industria Química, UNL-CONICET, Güemes 3450, 3000 Santa Fe, Argentina.
Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain.
ACS Catal. 2022 Aug 19;12(16):10482-10498. doi: 10.1021/acscatal.2c02117. Epub 2022 Aug 10.
The ethanol surface reaction over CeO nanooctahedra (NO) and nanocubes (NC), which mainly expose (111) and (100) surfaces, respectively, was studied by means of infrared spectroscopy (TPSR-IR), mass spectrometry (TPSR-MS), and density functional theory (DFT) calculations. TPSR-MS results show that the production of H is 2.4 times higher on CeO-NC than on CeO-NO, which is rationalized starting from the different types of adsorbed ethoxy species controlled by the shape of the ceria particles. Over the CeO(111) surface, monodentate type I and II ethoxy species with the alkyl chain perpendicular or parallel to the surface, respectively, were identified. Meanwhile, on the CeO(100) surface, bidentate and monodentate type III ethoxy species on the checkerboard O-terminated surface and on a pyramid of the reconstructed (100) surface, respectively, are found. The more labile surface ethoxy species on each ceria nanoshape, which are the monodentate type I or III ethoxy on CeO-NO and CeO-NC, respectively, react on the surface to give acetate species that decompose to CO and CH, while H is formed via the recombination of hydroxyl species. In addition, the more stable monodentate type II and bidentate ethoxy species on CeO-NO and CeO-NC, respectively, give an ethylenedioxy intermediate, the binding of which is facet-dependent. On the (111) facet, the less strongly bound ethylenedioxy desorbs as ethylene, whereas on the (100) facet, the more strongly bound intermediate also produces CO and H via formate species. Thus, on the (100) facet, an additional pathway toward H formation is found. ESR activity measurements show an enhanced H production on the nanocubes.
通过红外光谱(TPSR-IR)、质谱(TPSR-MS)和密度泛函理论(DFT)计算,研究了乙醇在主要分别暴露(111)和(100)表面的CeO纳米八面体(NO)和纳米立方体(NC)上的表面反应。TPSR-MS结果表明,CeO-NC上H的生成量比CeO-NO上高2.4倍,这可以从由二氧化铈颗粒形状控制的不同类型吸附乙氧基物种出发进行合理解释。在CeO(111)表面,分别鉴定出烷基链垂直或平行于表面的单齿I型和II型乙氧基物种。同时,在CeO(100)表面,分别在棋盘状O端表面和重构(100)表面的金字塔上发现了双齿和单齿III型乙氧基物种。每种二氧化铈纳米形状上较不稳定的表面乙氧基物种,即CeO-NO和CeO-NC上的单齿I型或III型乙氧基,在表面反应生成醋酸盐物种,醋酸盐分解为CO和CH,而H则通过羟基物种的重组形成。此外,CeO-NO和CeO-NC上分别较稳定的单齿II型和双齿乙氧基物种生成一种乙二氧基中间体,其结合与晶面有关。在(111)晶面上,结合较弱的乙二氧基以乙烯形式解吸,而在(100)晶面上,结合较强的中间体也通过甲酸盐物种生成CO和H。因此,在(100)晶面上,发现了一条额外的H形成途径。ESR活性测量表明纳米立方体上H的生成增强。