Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, University of Toronto, ON, Canada (A.I., C.M., T.L., S.L.R., R.M.W.).
Department of Medical Biophysics (C.M.), University of Toronto, ON, Canada.
Circ Cardiovasc Imaging. 2023 Jun;16(6):e015205. doi: 10.1161/CIRCIMAGING.122.015205. Epub 2023 Jun 20.
Existing models for prediction of major adverse cardiovascular events (MACE) after repair of tetralogy of Fallot have been limited by modest predictive capacity and limited applicability to routine clinical practice. We hypothesized that an artificial intelligence model using an array of parameters would enhance 5-year MACE prediction in adults with repaired tetralogy of Fallot.
A machine learning algorithm was applied to 2 nonoverlapping, institutional databases of adults with repaired tetralogy of Fallot: (1) for model development, a prospectively constructed clinical and cardiovascular magnetic resonance registry; (2) for model validation, a retrospective database comprised of variables extracted from the electronic health record. The MACE composite outcome included mortality, resuscitated sudden death, sustained ventricular tachycardia and heart failure. Analysis was restricted to individuals with MACE or followed ≥5 years. A random forest model was trained using machine learning (n=57 variables). Repeated random sub-sampling validation was sequentially applied to the development dataset followed by application to the validation dataset.
We identified 804 individuals (n=312 for development and n=492 for validation). Model prediction (area under the curve [95% CI]) for MACE in the validation dataset was strong (0.82 [0.74-0.89]) with superior performance to a conventional Cox multivariable model (0.63 [0.51-0.75]; =0.003). Model performance did not change significantly with input restricted to the 10 strongest features (decreasing order of strength: right ventricular end-systolic volume indexed, right ventricular ejection fraction, age at cardiovascular magnetic resonance imaging, age at repair, absolute ventilatory anaerobic threshold, right ventricular end-diastolic volume indexed, ventilatory anaerobic threshold % predicted, peak aerobic capacity, left ventricular ejection fraction, and pulmonary regurgitation fraction; 0.81 [0.72-0.89]; =0.232). Removing exercise parameters resulted in inferior model performance (0.75 [0.65-0.84]; =0.002).
In this single-center study, a machine learning-based prediction model comprised of readily available clinical and cardiovascular magnetic resonance imaging variables performed well in an independent validation cohort. Further study will determine the value of this model for risk stratification in adults with repared tetralogy of Fallot.
现有的预测法洛四联症修复后主要不良心血管事件(MACE)的模型预测能力有限,且难以适用于常规临床实践。我们假设,使用一系列参数的人工智能模型将提高法洛四联症修复后成年人的 5 年 MACE 预测能力。
应用机器学习算法分析两个非重叠的法洛四联症修复后成人机构数据库:(1)前瞻性构建的临床和心血管磁共振注册中心;(2)由电子病历中提取变量组成的回顾性数据库。MACE 复合结局包括死亡、复苏性猝死、持续性室性心动过速和心力衰竭。分析仅限于有 MACE 或随访时间≥5 年的患者。使用机器学习对随机森林模型(n=57 个变量)进行训练。对开发数据集进行反复随机子抽样验证,然后应用于验证数据集。
我们共纳入 804 名患者(n=312 例用于开发,n=492 例用于验证)。验证数据集中的 MACE 预测模型(曲线下面积[95%CI])具有较强的预测能力(0.82[0.74-0.89]),优于传统 Cox 多变量模型(0.63[0.51-0.75];=0.003)。当输入仅限于 10 个最强特征(按强度降序排列:右心室收缩末期容积指数、右心室射血分数、心血管磁共振成像时的年龄、修复时的年龄、绝对通气无氧阈值、右心室舒张末期容积指数、通气无氧阈值%预测值、峰值有氧能力、左心室射血分数和肺瓣反流分数)时,模型性能没有显著变化(0.81[0.72-0.89];=0.232)。删除运动参数后,模型性能下降(0.75[0.65-0.84];=0.002)。
在这项单中心研究中,由易于获得的临床和心血管磁共振成像变量组成的基于机器学习的预测模型在独立验证队列中表现良好。进一步的研究将确定该模型在法洛四联症修复后成人中的风险分层中的价值。