Yan Jingjing, Wang Huan, Zeng Junyang, Zhang Xin, Nan Ce-Wen, Zhang Shujun
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China.
International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Small. 2023 Oct;19(42):e2304310. doi: 10.1002/smll.202304310. Epub 2023 Jun 20.
Dielectric energy storage polymers play a vital role in advanced electronics and electrical systems, due to their high breakdown strength, excellent reliability, and easy fabrication. However, the low dielectric constant and poor thermal resistance of dielectric polymers limit their energy storage density and working temperatures, making them less versatile for broader applications. In this work, a novel carboxylated poly (p-phenylene terephthalamide) (c-PPTA) is synthesized and employed to simultaneously enhance the dielectric constant and thermal resistance of polyetherimide (PEI), leading to a discharged energy density of 6.4 J cm at 150 °C. The introduction of c-PPTA molecules effectively reduces the ΠΠ stacking effect and increases the average chain spacing between polymer molecules, which is conducive to improving the dielectric constant. Additionally, c-PPTA molecules with stronger positive charges and high dipole moments can capture electrons, resulting in reduced conduction loss and enhanced breakdown strength at high temperatures. The coiled capacitor fabricated with the PEI/c-PPTA film exhibits superior capacitance performances and higher working temperatures compared to commercial metalized PP capacitors, demonstrating great potential for dielectric polymers in high-temperature electronic and electrical energy storage systems.
介电储能聚合物在先进电子和电气系统中发挥着至关重要的作用,这归因于其高击穿强度、出色的可靠性以及易于制造的特点。然而,介电聚合物的低介电常数和较差的耐热性限制了它们的储能密度和工作温度,使其在更广泛应用中的通用性较差。在这项工作中,合成了一种新型羧化聚对苯二甲酰对苯二胺(c-PPTA),并用于同时提高聚醚酰亚胺(PEI)的介电常数和耐热性,从而在150°C时实现了6.4 J/cm³的放电能量密度。c-PPTA分子的引入有效降低了π-π堆积效应,并增加了聚合物分子之间的平均链间距,这有利于提高介电常数。此外,具有更强正电荷和高偶极矩的c-PPTA分子可以捕获电子,从而降低传导损耗并提高高温下的击穿强度。与商用金属化聚丙烯电容器相比,用PEI/c-PPTA薄膜制造的卷绕电容器表现出优异的电容性能和更高的工作温度,这表明介电聚合物在高温电子和电气储能系统中具有巨大潜力。