Suppr超能文献

通过纳米限域实现聚合物纳米复合材料中的高温电容储能

High-temperature capacitive energy stroage in polymer nanocomposites through nanoconfinement.

作者信息

Li Xinhui, Liu Bo, Wang Jian, Li Shuxuan, Zhen Xin, Zhi Jiapeng, Zou Junjie, Li Bei, Shen Zhonghui, Zhang Xin, Zhang Shujun, Nan Ce-Wen

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices & International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.

Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2522, Australia.

出版信息

Nat Commun. 2024 Aug 6;15(1):6655. doi: 10.1038/s41467-024-51052-y.

Abstract

Polymeric-based dielectric materials hold great potential as energy storage media in electrostatic capacitors. However, the inferior thermal resistance of polymers leads to severely degraded dielectric energy storage capabilities at elevated temperatures, limiting their applications in harsh environments. Here we present a flexible laminated polymer nanocomposite where the polymer component is confined at the nanoscale, achieving improved thermal-mechanical-electrical stability within the resulting nanocomposite. The nanolaminate, consisting of nanoconfined polyetherimide (PEI) polymer sandwiched between solid AlO layers, exhibits a high energy density of 18.9 J/cm with a high energy efficiency of ~ 91% at elevated temperature of 200°C. Our work demonstrates that nanoconfinement of PEI polymer results in reduced diffusion coefficient and constrained thermal dynamics, leading to a remarkable increase of 37°C in glass-transition temperature compared to bulk PEI polymer. The combined effects of nanoconfinement and interfacial trapping within the nanolaminates synergistically contribute to improved electrical breakdown strength and enhanced energy storage performance across temperature range up to 250°C. By utilizing the flexible ultrathin nanolaminate on curved surfaces such as thin metal wires, we introduce an innovative concept that enables the creation of a highly efficient and compact metal-wired capacitor, achieving substantial capacitance despite the minimal device volume.

摘要

基于聚合物的介电材料在静电电容器中作为储能介质具有巨大潜力。然而,聚合物较差的热阻导致其在高温下介电储能能力严重下降,限制了它们在恶劣环境中的应用。在此,我们展示了一种柔性层压聚合物纳米复合材料,其中聚合物组分被限制在纳米尺度,从而在所得纳米复合材料中实现了热 - 机械 - 电稳定性的提升。这种纳米层压板由夹在固态AlO层之间的纳米受限聚醚酰亚胺(PEI)聚合物组成,在200°C的高温下展现出18.9 J/cm³的高能量密度以及约91%的高能量效率。我们的工作表明,PEI聚合物的纳米限域导致扩散系数降低和热动力学受限,与本体PEI聚合物相比,玻璃化转变温度显著提高了37°C。纳米层压板内纳米限域和界面俘获的综合效应协同有助于提高电击穿强度,并在高达250°C的温度范围内增强储能性能。通过在诸如细金属线等弯曲表面上使用柔性超薄纳米层压板,我们引入了一种创新概念,能够制造出高效且紧凑的金属线电容器,尽管器件体积最小,但仍能实现可观的电容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d801/11303793/0488e6da6e3e/41467_2024_51052_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验