Saint Antoine Research Center, L'Institut national de la santé et de la recherche médicale UMR 938, Sorbonne Université, Paris, France.
Service de Biologie de La Reproduction, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France.
J Med Internet Res. 2023 Jun 21;25:e44047. doi: 10.2196/44047.
Testicular sperm extraction (TESE) is an essential therapeutic tool for the management of male infertility. However, it is an invasive procedure with a success rate up to 50%. To date, no model based on clinical and laboratory parameters is sufficiently powerful to accurately predict the success of sperm retrieval in TESE.
The aim of this study is to compare a wide range of predictive models under similar conditions for TESE outcomes in patients with nonobstructive azoospermia (NOA) to identify the correct mathematical approach to apply, most appropriate study size, and relevance of the input biomarkers.
We analyzed 201 patients who underwent TESE at Tenon Hospital (Assistance Publique-Hôpitaux de Paris, Sorbonne University, Paris), distributed in a retrospective training cohort of 175 patients (January 2012 to April 2021) and a prospective testing cohort (May 2021 to December 2021) of 26 patients. Preoperative data (according to the French standard exploration of male infertility, 16 variables) including urogenital history, hormonal data, genetic data, and TESE outcomes (representing the target variable) were collected. A TESE was considered positive if we obtained sufficient spermatozoa for intracytoplasmic sperm injection. After preprocessing the raw data, 8 machine learning (ML) models were trained and optimized on the retrospective training cohort data set: The hyperparameter tuning was performed by random search. Finally, the prospective testing cohort data set was used for the model evaluation. The metrics used to evaluate and compare the models were the following: sensitivity, specificity, area under the receiver operating characteristic curve (AUC-ROC), and accuracy. The importance of each variable in the model was assessed using the permutation feature importance technique, and the optimal number of patients to include in the study was assessed using the learning curve.
The ensemble models, based on decision trees, showed the best performance, especially the random forest model, which yielded the following results: AUC=0.90, sensitivity=100%, and specificity=69.2%. Furthermore, a study size of 120 patients seemed sufficient to properly exploit the preoperative data in the modeling process, since increasing the number of patients beyond 120 during model training did not bring any performance improvement. Furthermore, inhibin B and a history of varicoceles exhibited the highest predictive capacity.
An ML algorithm based on an appropriate approach can predict successful sperm retrieval in men with NOA undergoing TESE, with promising performance. However, although this study is consistent with the first step of this process, a subsequent formal prospective multicentric validation study should be undertaken before any clinical applications. As future work, we consider the use of recent and clinically relevant data sets (including seminal plasma biomarkers, especially noncoding RNAs, as markers of residual spermatogenesis in NOA patients) to improve our results even more.
睾丸精子提取(TESE)是男性不育症治疗的重要治疗手段。然而,它是一种具有高达 50%成功率的侵入性手术。迄今为止,没有基于临床和实验室参数的模型能够足够准确地预测 TESE 中精子采集的成功。
本研究旨在比较在非阻塞性无精子症(NOA)患者中进行 TESE 时,在相似条件下的多种预测模型,以确定正确的数学方法、最合适的研究规模以及输入生物标志物的相关性。
我们分析了 201 名在巴黎 Tenon 医院(巴黎公立医院集团-索邦大学)接受 TESE 的患者,分布在回顾性训练队列的 175 名患者(2012 年 1 月至 2021 年 4 月)和前瞻性测试队列的 26 名患者中(2021 年 5 月至 2021 年 12 月)。收集了术前数据(根据法国男性不育标准检查,包括 16 个变量),包括泌尿生殖史、激素数据、遗传数据和 TESE 结果(代表目标变量)。如果我们获得了足够用于胞浆内精子注射的精子,则认为 TESE 为阳性。在对原始数据进行预处理后,我们在回顾性训练队列数据集上训练和优化了 8 种机器学习(ML)模型:通过随机搜索进行超参数调整。最后,使用前瞻性测试队列数据集对模型进行评估。用于评估和比较模型的指标如下:灵敏度、特异性、接收者操作特征曲线下的面积(AUC-ROC)和准确性。使用置换特征重要性技术评估模型中每个变量的重要性,并使用学习曲线评估纳入研究的最佳患者数量。
基于决策树的集成模型表现最佳,尤其是随机森林模型,其结果如下:AUC=0.90、灵敏度=100%和特异性=69.2%。此外,似乎 120 名患者的研究规模足以在建模过程中充分利用术前数据,因为在模型训练过程中增加超过 120 名患者不会带来任何性能提高。此外,抑制素 B 和精索静脉曲张病史显示出最高的预测能力。
基于适当方法的 ML 算法可以预测非阻塞性无精子症患者接受 TESE 时的精子采集成功,具有有前途的性能。然而,尽管本研究符合该过程的第一步,但在进行任何临床应用之前,应该进行随后的正式前瞻性多中心验证研究。作为未来的工作,我们考虑使用最近和临床相关的数据集(包括精液生物标志物,特别是非编码 RNA,作为非阻塞性无精子症患者残留生精的标志物)来进一步提高我们的结果。