Kaltsas Aris, Stavros Sofoklis, Kratiras Zisis, Zikopoulos Athanasios, Machairiotis Nikolaos, Potiris Anastasios, Dimitriadis Fotios, Sofikitis Nikolaos, Chrisofos Michael, Zachariou Athanasios
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Biomedicines. 2024 Nov 25;12(12):2679. doi: 10.3390/biomedicines12122679.
: Non-obstructive azoospermia (NOA) is a severe form of male infertility characterized by the absence of sperm in the ejaculate due to impaired spermatogenesis. Testicular sperm extraction (TESE) combined with intracytoplasmic sperm injection is the primary treatment, but success rates are unpredictable, causing significant emotional and financial burdens. Traditional clinical and hormonal predictors have shown inconsistent reliability. This review aims to evaluate current and emerging non-invasive preoperative predictors of successful sperm retrieval in men with NOA, highlighting promising biomarkers and their potential clinical applications. : A comprehensive literature review was conducted, examining studies on clinical and hormonal factors, imaging techniques, molecular biology biomarkers, and genetic testing related to TESE outcomes in NOA patients. The potential role of artificial intelligence and machine learning in enhancing predictive models was also explored. : Traditional predictors such as patient age, body mass index, infertility duration, testicular volume, and serum hormone levels (follicle-stimulating hormone, luteinizing hormone, inhibin B) have limited predictive value for TESE success. Emerging non-invasive biomarkers-including anti-Müllerian hormone levels, inhibin B to anti-Müllerian hormone ratio, specific microRNAs, long non-coding RNAs, circular RNAs, and germ-cell-specific proteins like TEX101-show promise in predicting successful sperm retrieval. Advanced imaging techniques like high-frequency ultrasound and functional magnetic resonance imaging offer potential but require further validation. Integrating molecular biomarkers with artificial intelligence and machine learning algorithms may enhance predictive accuracy. : Predicting TESE outcomes in men with NOA remains challenging using conventional clinical and hormonal parameters. Emerging non-invasive biomarkers offer significant potential to improve predictive models but require validation through large-scale studies. Incorporating artificial intelligence and machine learning could further refine predictive accuracy, aiding clinical decision-making and improving patient counseling and treatment strategies in NOA.
非梗阻性无精子症(NOA)是男性不育的一种严重形式,其特征是由于精子发生受损,射精中没有精子。睾丸精子提取(TESE)联合卵胞浆内单精子注射是主要治疗方法,但成功率难以预测,会造成巨大的情感和经济负担。传统的临床和激素预测指标的可靠性并不一致。本综述旨在评估目前和新出现的非侵入性术前预测指标,以预测NOA男性患者精子获取成功的情况,重点介绍有前景的生物标志物及其潜在的临床应用。:进行了全面的文献综述,研究了与NOA患者TESE结果相关的临床和激素因素、成像技术、分子生物学标志物和基因检测的研究。还探讨了人工智能和机器学习在增强预测模型方面的潜在作用。:传统预测指标,如患者年龄、体重指数、不育持续时间、睾丸体积和血清激素水平(促卵泡激素、促黄体生成素、抑制素B)对TESE成功的预测价值有限。新出现的非侵入性生物标志物,包括抗苗勒管激素水平、抑制素B与抗苗勒管激素的比值、特定的微小RNA、长链非编码RNA、环状RNA以及生殖细胞特异性蛋白如TEX101,在预测精子获取成功方面显示出前景。高频超声和功能磁共振成像等先进成像技术具有潜力,但需要进一步验证。将分子生物标志物与人工智能和机器学习算法相结合可能会提高预测准确性。:使用传统的临床和激素参数预测NOA男性患者的TESE结果仍然具有挑战性。新出现的非侵入性生物标志物在改善预测模型方面具有巨大潜力,但需要通过大规模研究进行验证。纳入人工智能和机器学习可以进一步提高预测准确性,有助于临床决策,并改善NOA患者的咨询和治疗策略。