Yu Jian, Wang Zhong-Lin, Ma Tianwei
Department of Civil and Environmental Engineering, University of Hawaii at Mānoa, Honolulu, HI 96822, USA.
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
Research (Wash D C). 2023 Jun 19;6:0173. doi: 10.34133/research.0173. eCollection 2023.
Capacitive mixing is a promising blue energy technology due to its membrane-free electricity generation and long electrode life cycle. However, because of limited performance, existing systems do not lend themselves to practical implementation. Although it is a crucial factor directly influencing electrode behavior, surface chemistry has largely been overlooked in capacitive mixing. Here, we show that manipulating surface functionalization alone can tune the responses of electrodes to produce a high voltage rise without altering the pore structure of the electrodes. Our findings reveal that the spontaneous electrode potential of a surface-modified carbon electrode shifts negatively proportional to the surface charge due to the surface groups, which explains why and how manipulating the surface chemistry can improve the power generation capacity. Using electrodes fabricated with identical activated carbon material but with different surface treatments, we have achieved a remarkably high power density of 166 mW/m delivered to an electrical load under a 0.6 M to 0.01 M salinity gradient, with the total power generated of 225 mW/m. The corresponding volumetric power densities were 0.88 kW/m net and 1.17 kW/m total. The volumetric power density of our prototype is comparable to or better than those of prevailing membrane technologies, such as pressure retarded osmosis and reverse electrolysis, whose volumetric power density values are 1.1 kW/m and 0.16 kW/m, respectively. In the seawater stage, the net power density reached 432 mW/m or 2.3 kW/m. Such performance far exceeds existing membrane-free systems, with the highest reported power density of 65 mW/m under a 0.5 M to 0.02 M salinity gradient (121 mW/m in this work). The device demonstrated unparalleled durability, maintaining 90% of the maximum energy capacity after 54,000 charge-discharge cycles.
电容混合是一种很有前景的蓝色能源技术,因为它无需隔膜发电且电极寿命周期长。然而,由于性能有限,现有系统并不适合实际应用。尽管表面化学是直接影响电极行为的关键因素,但在电容混合中却 largely 被忽视了。在这里,我们表明仅通过操纵表面功能化就可以调节电极的响应,以在不改变电极孔隙结构的情况下产生高电压上升。我们的研究结果表明,由于表面基团的存在,表面改性碳电极的自发电极电位与表面电荷成负比例变化,这解释了为什么以及如何通过操纵表面化学来提高发电能力。使用由相同的活性炭材料制成但经过不同表面处理的电极,我们在 0.6 M 至 0.01 M 的盐度梯度下,实现了向电负载输送的高达 166 mW/m 的显著高功率密度,总发电量为 225 mW/m。相应的体积功率密度分别为净 0.88 kW/m 和总 1.17 kW/m。我们原型的体积功率密度与现有主流膜技术(如压力延迟渗透和反向电解)相当或更好,后者的体积功率密度值分别为 1.1 kW/m 和 0.16 kW/m。在海水阶段,净功率密度达到 432 mW/m 或 2.3 kW/m。这种性能远远超过现有的无隔膜系统,在 0.5 M 至 0.02 M 的盐度梯度下,现有报道的最高功率密度为 65 mW/m(本工作中为 121 mW/m)。该装置表现出无与伦比的耐久性,在 54,000 次充放电循环后仍保持最大能量容量的 90%。