Yazda Khadija, Bleau Katarina, Zhang Yuning, Capaldi Xavier, St-Denis Thomas, Grutter Peter, Reisner Walter W
Department of Physics, McGill University Montreal, Quebec H3A 2T8, Canada.
BGI-Shenzhen, Shenzhen 518083, China.
Nano Lett. 2021 May 26;21(10):4152-4159. doi: 10.1021/acs.nanolett.0c04704. Epub 2021 May 13.
Nanopores embedded in two-dimensional (2D) nanomaterials are a promising emerging technology for osmotic power generation. Here, coupling our new AFM-based pore fabrication approach, tip-controlled local breakdown (TCLB), with a hybrid membrane formed by coating silicon nitride (SiN) with hexagonal boron nitride (hBN), we show that high osmotic power density can be obtained in systems that do not possess the thinness of atomic monolayers. In our approach, the high osmotic performance arises from charge separation induced by the highly charged hBN surface rather than charge on the inner pore wall. Moreover, exploiting TCLB's capability of producing sub 10 nm pore arrays, we investigate the effects of pore-pore interaction on the overall power density. We find that an optimum pore-to-pore spacing of ∼500 nm is required to maintain an efficient selective transport mechanism.
嵌入二维(2D)纳米材料中的纳米孔是一种很有前景的新兴渗透发电技术。在此,我们将基于原子力显微镜(AFM)的新型孔制造方法——针尖控制局部击穿(TCLB),与通过用六方氮化硼(hBN)涂覆氮化硅(SiN)形成的混合膜相结合,结果表明,在不具备原子单层薄度的系统中也能获得高渗透功率密度。在我们的方法中,高渗透性能源于高电荷hBN表面诱导的电荷分离,而非内孔壁上的电荷。此外,利用TCLB制造亚10纳米孔阵列的能力,我们研究了孔间相互作用对总功率密度的影响。我们发现,需要约500纳米的最佳孔间距来维持高效的选择性传输机制。