Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
BASF 3D Printing Solutions B.V., Emmen, Netherlands.
Sci Robot. 2023 Jun 21;8(79):eadg3792. doi: 10.1126/scirobotics.adg3792.
Most soft robots are pneumatically actuated and fabricated by molding and assembling processes that typically require many manual operations and limit complexity. Furthermore, complex control components (for example, electronic pumps and microcontrollers) must be added to achieve even simple functions. Desktop fused filament fabrication (FFF) three-dimensional printing provides an accessible alternative with less manual work and the capability of generating more complex structures. However, because of material and process limitations, FFF-printed soft robots often have a high effective stiffness and contain a large number of leaks, limiting their applications. We present an approach for the design and fabrication of soft, airtight pneumatic robotic devices using FFF to simultaneously print actuators with embedded fluidic control components. We demonstrated this approach by printing actuators an order of magnitude softer than those previously fabricated using FFF and capable of bending to form a complete circle. Similarly, we printed pneumatic valves that control a high-pressure airflow with low control pressure. Combining the actuators and valves, we demonstrated a monolithically printed electronics-free autonomous gripper. When connected to a constant supply of air pressure, the gripper autonomously detected and gripped an object and released the object when it detected a force due to the weight of the object acting perpendicular to the gripper. The entire fabrication process of the gripper required no posttreatment, postassembly, or repair of manufacturing defects, making this approach highly repeatable and accessible. Our proposed approach represents a step toward complex, customized robotic systems and components created at distributed fabricating facilities.
大多数软体机器人都是气动驱动的,采用模塑和组装工艺制造,这些工艺通常需要大量的手动操作,限制了其复杂性。此外,为了实现简单的功能,还必须添加复杂的控制组件(例如电子泵和微控制器)。桌面熔丝制造(FFF)三维打印提供了一种可行的替代方案,其手动操作较少,并且能够生成更复杂的结构。然而,由于材料和工艺的限制,FFF 打印的软体机器人通常具有较高的有效刚度,并且包含大量的泄漏,限制了其应用。我们提出了一种使用 FFF 设计和制造柔软、气密的气动机器人装置的方法,该方法可同时打印带有嵌入式流体控制组件的致动器。我们通过打印比以前使用 FFF 制造的致动器软一个数量级的致动器来演示这种方法,这些致动器能够弯曲形成一个完整的圆。类似地,我们打印了能够控制高压气流的气动阀,其控制压力较低。我们将致动器和阀结合在一起,展示了一个无需电子设备的整体打印式自主夹爪。当与恒定的气压供应连接时,夹爪能够自动检测和抓取物体,并在检测到由于物体垂直于夹爪的重量而产生的力时释放物体。夹爪的整个制造过程无需后处理、后组装或修复制造缺陷,因此这种方法具有高度的可重复性和易用性。我们提出的方法代表了朝着在分布式制造设施中创建复杂的定制机器人系统和组件迈出的一步。
Cyborg Bionic Syst. 2024-7-17
Sci Robot. 2021-2-17
Sci Robot. 2024-1-31
IEEE Trans Med Robot Bionics. 2025-8
Nat Commun. 2025-4-25
IEEE Int Conf Soft Robot. 2024-4
IEEE Int Conf Soft Robot. 2024-4
Nat Commun. 2025-2-6
Adv Sci (Weinh). 2024-11