Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China.
Faculty of Science, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, People's Republic of China.
Nanotechnology. 2023 Jul 11;34(39). doi: 10.1088/1361-6528/ace05b.
Two-dimensional (2D) supramolecular self-assembly architectures are considered one of the most significant and challenging topics in nanotechnology and modern organic chemistry. The study of these processes on surfaces is vital to achieving a higher degree of control in the design of supramolecular architecture. Herein, we report on the 2D self-assembly monolayer architectures based on Cand Cmolecules on a semiconductor CuSe monolayer with periodic nanopores, which are essential for providing ideas for surface template chemistry. With the aid of low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/STS) and density functional theory (DFT) calculation methods, we systematically investigate the adsorption configurations and electronic properties of Cand Con CuSe monolayer with periodic nanopores. Our results show that both the Cand Cmolecules above the nanopores will fall into the nanopores, while those on the CuSe surface will show well-defined self-assembly with various adsorption configurations. Besides, through STS measurement, the lowest unoccupied molecular orbitals (LUMOs) and characteristic peaks of fullerene molecules will be slightly different due to different adsorption configurations. This work helps us to study the adsorption behavior of the fullerene family on various kinds of semiconductor substrates, and also provides vigorous support for the development of fullerene electrical devices in the future.
二维(2D)超分子自组装结构被认为是纳米技术和现代有机化学中最重要和最具挑战性的课题之一。在表面上研究这些过程对于在超分子结构设计中实现更高程度的控制至关重要。在此,我们报告了基于 Cand C 分子在具有周期性纳米孔的半导体 CuSe 单层上的 2D 自组装单层结构,这对于提供表面模板化学的思路是必不可少的。借助低温扫描隧道显微镜/光谱(LT-STM/STS)和密度泛函理论(DFT)计算方法,我们系统地研究了 Cand Con 具有周期性纳米孔的 CuSe 单层的吸附构型和电子性质。我们的结果表明,纳米孔上方的 Cand C 分子都将落入纳米孔中,而在 CuSe 表面上的分子将呈现出具有各种吸附构型的明确自组装。此外,通过 STS 测量,由于不同的吸附构型,富勒烯分子的最低未占据分子轨道(LUMO)和特征峰会略有不同。这项工作有助于我们研究富勒烯家族在各种半导体衬底上的吸附行为,并为未来富勒烯电子器件的发展提供有力支持。