Suppr超能文献

使用深度学习进行自动视网膜母细胞瘤筛查和监测。

Automatic retinoblastoma screening and surveillance using deep learning.

机构信息

Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

出版信息

Br J Cancer. 2023 Aug;129(3):466-474. doi: 10.1038/s41416-023-02320-z. Epub 2023 Jun 21.

Abstract

BACKGROUND

Retinoblastoma is the most common intraocular malignancy in childhood. With the advanced management strategy, the globe salvage and overall survival have significantly improved, which proposes subsequent challenges regarding long-term surveillance and offspring screening. This study aimed to apply a deep learning algorithm to reduce the burden of follow-up and offspring screening.

METHODS

This cohort study includes retinoblastoma patients who visited Beijing Tongren Hospital from March 2018 to January 2022 for deep learning algorism development. Clinical-suspected and treated retinoblastoma patients from February 2022 to June 2022 were prospectively collected for prospective validation. Images from the posterior pole and peripheral retina were collected, and reference standards were made according to the consensus of the multidisciplinary management team. A deep learning algorithm was trained to identify "normal fundus", "stable retinoblastoma" in which specific treatment is not required, and "active retinoblastoma" in which specific treatment is required. The performance of each classifier included sensitivity, specificity, accuracy, and cost-utility.

RESULTS

A total of 36,623 images were included for developing the Deep Learning Assistant for Retinoblastoma Monitoring (DLA-RB) algorithm. In internal fivefold cross-validation, DLA-RB achieved an area under curve (AUC) of 0.998 (95% confidence interval [CI] 0.986-1.000) in distinguishing normal fundus and active retinoblastoma, and 0.940 (95% CI 0.851-0.996) in distinguishing stable and active retinoblastoma. From February 2022 to June 2022, 139 eyes of 103 patients were prospectively collected. In identifying active retinoblastoma tumours from all clinical-suspected patients and active retinoblastoma from all treated retinoblastoma patients, the AUC of DLA-RB reached 0.991 (95% CI 0.970-1.000), and 0.962 (95% CI 0.915-1.000), respectively. The combination between ophthalmologists and DLA-RB significantly improved the accuracy of competent ophthalmologists and residents regarding both binary tasks. Cost-utility analysis revealed DLA-RB-based diagnosis mode is cost-effective in both retinoblastoma diagnosis and active retinoblastoma identification.

CONCLUSIONS

DLA-RB achieved high accuracy and sensitivity in identifying active retinoblastoma from the normal and stable retinoblastoma fundus. It can be used to surveil the activity of retinoblastoma during follow-up and screen high-risk offspring. Compared with referral procedures to ophthalmologic centres, DLA-RB-based screening and surveillance is cost-effective and can be incorporated within telemedicine programs.

CLINICAL TRIAL REGISTRATION

This study was registered on ClinicalTrials.gov (NCT05308043).

摘要

背景

视网膜母细胞瘤是儿童中最常见的眼内恶性肿瘤。随着先进的管理策略的应用,眼球保存和整体生存率得到了显著提高,这对长期监测和后代筛查提出了后续挑战。本研究旨在应用深度学习算法来减轻随访和后代筛查的负担。

方法

这项队列研究纳入了 2018 年 3 月至 2022 年 1 月期间在北京同仁医院就诊的接受深度学习算法开发的视网膜母细胞瘤患者。2022 年 2 月至 6 月前瞻性收集临床疑似和治疗后的视网膜母细胞瘤患者进行前瞻性验证。采集后极部和周边视网膜图像,并根据多学科管理团队的共识制定参考标准。训练一个深度学习算法来识别“正常眼底”、不需要特定治疗的“稳定视网膜母细胞瘤”和需要特定治疗的“活跃视网膜母细胞瘤”。每个分类器的性能包括敏感性、特异性、准确性和成本效益。

结果

共纳入 36623 张图像用于开发用于视网膜母细胞瘤监测的深度学习助手(DLA-RB)算法。在内部五重交叉验证中,DLA-RB 在区分正常眼底和活跃视网膜母细胞瘤方面的曲线下面积(AUC)为 0.998(95%置信区间[CI] 0.986-1.000),在区分稳定和活跃视网膜母细胞瘤方面的 AUC 为 0.940(95%CI 0.851-0.996)。2022 年 2 月至 6 月,前瞻性收集了 103 例患者的 139 只眼。在从所有临床疑似患者中识别活跃的视网膜母细胞瘤肿瘤和从所有治疗的视网膜母细胞瘤患者中识别活跃的视网膜母细胞瘤方面,DLA-RB 的 AUC 分别达到 0.991(95%CI 0.970-1.000)和 0.962(95%CI 0.915-1.000)。眼科医生与 DLA-RB 的结合显著提高了有能力的眼科医生和住院医师在这两个二进制任务中的准确性。成本效益分析表明,基于 DLA-RB 的诊断模式在视网膜母细胞瘤诊断和活跃视网膜母细胞瘤识别方面均具有成本效益。

结论

DLA-RB 在从正常和稳定的视网膜母细胞瘤眼底中识别活跃的视网膜母细胞瘤方面具有较高的准确性和敏感性。它可用于在随访期间监测视网膜母细胞瘤的活动,并筛查高危后代。与转诊至眼科中心相比,基于 DLA-RB 的筛查和监测具有成本效益,可纳入远程医疗计划。

临床试验注册

本研究在 ClinicalTrials.gov 注册(NCT05308043)。

相似文献

1
Automatic retinoblastoma screening and surveillance using deep learning.
Br J Cancer. 2023 Aug;129(3):466-474. doi: 10.1038/s41416-023-02320-z. Epub 2023 Jun 21.
3
Artificial intelligence methods in diagnosis of retinoblastoma based on fundus imaging: a systematic review and meta-analysis.
Graefes Arch Clin Exp Ophthalmol. 2025 Feb;263(2):547-553. doi: 10.1007/s00417-024-06643-2. Epub 2024 Sep 18.
4
Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach.
Front Med (Lausanne). 2021 Nov 25;8:740987. doi: 10.3389/fmed.2021.740987. eCollection 2021.
6
Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.
Graefes Arch Clin Exp Ophthalmol. 2020 Apr;258(4):851-867. doi: 10.1007/s00417-020-04609-8. Epub 2020 Jan 27.
7
A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations.
Lancet Digit Health. 2020 Jun;2(6):e295-e302. doi: 10.1016/S2589-7500(20)30063-7. Epub 2020 May 12.
9
Risk assessment of recurrence in sporadic retinoblastoma using a molecular-based algorithm.
Ophthalmic Genet. 2012 Mar;33(1):6-11. doi: 10.3109/13816810.2011.610859. Epub 2011 Nov 21.
10
Validation of a Deep Learning Algorithm for Diabetic Retinopathy.
Telemed J E Health. 2020 Aug;26(8):1001-1009. doi: 10.1089/tmj.2019.0137. Epub 2019 Nov 4.

引用本文的文献

1
An ultra-wide-field fundus image dataset for intelligent diagnosis of intraocular tumors.
Sci Data. 2025 Aug 30;12(1):1521. doi: 10.1038/s41597-025-05864-2.
4
Commentary: Artificial intelligence and machine learning in ocular oncology, retinoblastoma - A balanced perspective.
Indian J Ophthalmol. 2025 Aug 1;73(8):1218-1219. doi: 10.4103/IJO.IJO_232_25. Epub 2025 Jul 28.
6
Artificial intelligence and machine learning in ocular oncology, retinoblastoma (ArMOR).
Indian J Ophthalmol. 2025 May 1;73(5):741-743. doi: 10.4103/IJO.IJO_1768_24. Epub 2025 Apr 24.
10
Quickly diagnosing Bietti crystalline dystrophy with deep learning.
iScience. 2024 Jul 25;27(9):110579. doi: 10.1016/j.isci.2024.110579. eCollection 2024 Sep 20.

本文引用的文献

1
Variability in Primary Care Physician Attitudes Toward Medicaid Work Requirement Exemption Requests Made by Patients With Depression.
JAMA Health Forum. 2021 Oct 1;2(10):e212932. doi: 10.1001/jamahealthforum.2021.2932. eCollection 2021 Oct.
2
Cost-effectiveness of Artificial Intelligence-Based Retinopathy of Prematurity Screening.
JAMA Ophthalmol. 2022 Apr 1;140(4):401-409. doi: 10.1001/jamaophthalmol.2022.0223.
4
Contemporary Update of Retinoblastoma in China: Three-Decade Changes in Epidemiology, Clinical Features, Treatments, and Outcomes.
Am J Ophthalmol. 2022 Apr;236:193-203. doi: 10.1016/j.ajo.2021.09.026. Epub 2021 Oct 6.
5
Text Data Augmentation for Deep Learning.
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
7
Computerized assisted evaluation system for canine cardiomegaly via key points detection with deep learning.
Prev Vet Med. 2021 Aug;193:105399. doi: 10.1016/j.prevetmed.2021.105399. Epub 2021 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验