Wu Yijia, Mao Yanjing, Feng Kaiqiang, Wei Donglai, Song Liang
Fudan University, Fudan University, ShangHai, YangPu, China.
Shanghai Key Research Laboratory, Shanghai Key Research Laboratory, ShangHai, PuDong, China.
PeerJ Comput Sci. 2023 May 11;9:e1376. doi: 10.7717/peerj-cs.1376. eCollection 2023.
RGB color is a basic visual feature. Here we use machine learning and visual evoked potential (VEP) of electroencephalogram (EEG) data to investigate the decoding features of the time courses and space location that extract it, and whether they depend on a common brain cortex channel. We show that RGB color information can be decoded from EEG data and, with the task-irrelevant paradigm, features can be decoded across fast changes in VEP stimuli. These results are consistent with the theory of both event-related potential (ERP) and P300 mechanisms. The latency on time course is shorter and more temporally precise for RGB color stimuli than P300, a result that does not depend on a task-relevant paradigm, suggesting that RGB color is an updating signal that separates visual events. Meanwhile, distribution features are evident for the brain cortex of EEG signal, providing a space correlate of RGB color in classification accuracy and channel location. Finally, space decoding of RGB color depends on the channel classification accuracy and location obtained through training and testing EEG data. The result is consistent with channel power value distribution discharged by both VEP and electrophysiological stimuli mechanisms.
RGB颜色是一种基本的视觉特征。在此,我们使用机器学习和脑电图(EEG)数据的视觉诱发电位(VEP)来研究提取该特征的时间进程和空间位置的解码特征,以及它们是否依赖于共同的大脑皮层通道。我们表明,可以从EEG数据中解码RGB颜色信息,并且在任务无关范式下,能够跨VEP刺激的快速变化对特征进行解码。这些结果与事件相关电位(ERP)和P300机制的理论一致。RGB颜色刺激在时间进程上的潜伏期比P300更短且在时间上更精确,这一结果不依赖于任务相关范式,表明RGB颜色是一种区分视觉事件的更新信号。同时,EEG信号的大脑皮层分布特征明显,在分类准确性和通道位置方面提供了RGB颜色的空间关联。最后,RGB颜色的空间解码取决于通过训练和测试EEG数据获得的通道分类准确性和位置。该结果与VEP和电生理刺激机制释放的通道功率值分布一致。