Department of Electrical Engineering, Columbia University, New York, NY, USA.
Neural Netw. 2015 Mar;63:254-71. doi: 10.1016/j.neunet.2014.10.014. Epub 2014 Dec 24.
Past work demonstrated how monochromatic visual stimuli could be faithfully encoded and decoded under Nyquist-type rate conditions. Color visual stimuli were then traditionally encoded and decoded in multiple separate monochromatic channels. The brain, however, appears to mix information about color channels at the earliest stages of the visual system, including the retina itself. If information about color is mixed and encoded by a common pool of neurons, how can colors be demixed and perceived? We present Color Video Time Encoding Machines (Color Video TEMs) for encoding color visual stimuli that take into account a variety of color representations within a single neural circuit. We then derive a Color Video Time Decoding Machine (Color Video TDM) algorithm for color demixing and reconstruction of color visual scenes from spikes produced by a population of visual neurons. In addition, we formulate Color Video Channel Identification Machines (Color Video CIMs) for functionally identifying color visual processing performed by a spiking neural circuit. Furthermore, we derive a duality between TDMs and CIMs that unifies the two and leads to a general theory of neural information representation for stereoscopic color vision. We provide examples demonstrating that a massively parallel color visual neural circuit can be first identified with arbitrary precision and its spike trains can be subsequently used to reconstruct the encoded stimuli. We argue that evaluation of the functional identification methodology can be effectively and intuitively performed in the stimulus space. In this space, a signal reconstructed from spike trains generated by the identified neural circuit can be compared to the original stimulus.
过去的工作表明,在奈奎斯特型速率条件下,单色视觉刺激可以被忠实地编码和解码。传统上,彩色视觉刺激是通过多个单独的单色通道进行编码和解码的。然而,大脑似乎在视觉系统的最早阶段就将颜色通道的信息混合在一起,包括视网膜本身。如果关于颜色的信息是由一个共同的神经元池混合和编码的,那么颜色怎么能被分离和感知呢?我们提出了用于编码彩色视觉刺激的彩色视频时间编码机(Color Video TEM),该机器考虑了单个神经回路内的各种颜色表示。然后,我们推导出一种彩色视频时间解码机(Color Video TDM)算法,用于从视觉神经元群体产生的尖峰中分离和重建彩色视觉场景。此外,我们还提出了彩色视频通道识别机(Color Video CIM),用于对尖峰神经电路执行的彩色视觉处理进行功能识别。此外,我们推导出了 TDM 和 CIM 之间的对偶性,将两者统一起来,并为立体彩色视觉的神经信息表示提供了一个一般理论。我们提供了一些示例,演示了一个大规模并行的彩色视觉神经电路可以首先被任意精度地识别,并且可以随后使用其尖峰序列来重建编码的刺激。我们认为,可以在刺激空间中有效地和直观地执行功能识别方法的评估。在这个空间中,可以将由识别出的神经电路生成的尖峰序列重建的信号与原始刺激进行比较。