Suppr超能文献

大脑对颜色刺激的电生理变化分类

Classification of brain electrophysiological changes in response to colour stimuli.

作者信息

Göksel Duru Dilek, Alobaidi May

机构信息

Department of Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey.

Information Technologies, Graduate School of Science and Engineering, Altınbaş University, Istanbul, Turkey.

出版信息

Phys Eng Sci Med. 2021 Sep;44(3):727-743. doi: 10.1007/s13246-021-01021-2. Epub 2021 Jul 16.

Abstract

In this study, the classification of ongoing brain activity occurring as a response to colour stimuli was managed and reported. Until now, the classification of the seen colour from brain electrical signals has not been investigated or reported in the related literature. In this study, we aimed to classify EEG brain responses corresponding to blue, green, and red coloured shapes. In addition to the current literature, we focused on ongoing EEG responses instead of using ERP metrics, with visual stimulus-related ERP metrics also compared throughout the study. The feature extraction process was carried out using the Fourier transform to obtain the conventional band power values of the EEG for each stimulus type. Delta, theta, alpha, beta, and gamma-band power values of each one-second period constituted the feature set. In addition to scalp measurements, a second feature set was obtained based on the inverse solution of the EEG waves. Furthermore, we applied one-way ANOVA for the feature selection prior to classification procedures. Four classifiers were implemented using the reduced feature set and the raw one as well. The differences between scalp responses were localized mainly around the temporal and temporoparietal regions. Our ERP-component findings support the fact that additional brain regions among the visual cortex participate in the colour categorization process of the brain. RGB colours were identified using 1 s EEG data. Ensemble-KNN and KNN achieved the highest accuracy values (93%) when used either with scalp spectral features or source space features.

摘要

在本研究中,对作为对颜色刺激的反应而发生的持续脑活动进行了分类并予以报告。到目前为止,尚未在相关文献中对从脑电信号中识别所见颜色进行研究或报告。在本研究中,我们旨在对与蓝色、绿色和红色形状相对应的脑电图脑反应进行分类。除当前文献外,我们关注的是持续的脑电图反应,而非使用事件相关电位(ERP)指标,并且在整个研究过程中也对与视觉刺激相关的ERP指标进行了比较。特征提取过程使用傅里叶变换来获取每种刺激类型脑电图的传统频段功率值。每个一秒时间段的δ、θ、α、β和γ频段功率值构成特征集。除头皮测量外,还基于脑电波的逆解获得了第二个特征集。此外,在分类程序之前,我们应用单因素方差分析进行特征选择。使用简化特征集和原始特征集实现了四种分类器。头皮反应之间的差异主要集中在颞叶和颞顶叶区域。我们关于ERP成分的研究结果支持了这样一个事实,即视觉皮层中的其他脑区参与了大脑的颜色分类过程。使用1秒的脑电图数据识别RGB颜色。当与头皮频谱特征或源空间特征一起使用时,集成K近邻算法(Ensemble-KNN)和K近邻算法(KNN)获得了最高准确率值(93%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验