Suppr超能文献

用于西班牙语金融目标情感分析的变压器模型评估

Evaluation of transformer models for financial targeted sentiment analysis in Spanish.

作者信息

Pan Ronghao, García-Díaz José Antonio, Garcia-Sanchez Francisco, Valencia-García Rafael

机构信息

Faculdad de Informática, Universidad de Murcia, Murcia, Spain.

出版信息

PeerJ Comput Sci. 2023 May 9;9:e1377. doi: 10.7717/peerj-cs.1377. eCollection 2023.

Abstract

Nowadays, financial data from social media plays an important role to predict the stock market. However, the exponential growth of financial information and the different polarities of sentiment that other sectors or stakeholders may have on the same information has led to the need for new technologies that automatically collect and classify large volumes of information quickly and easily for each stakeholder. In this scenario, we conduct a targeted sentiment analysis that can automatically extract the main economic target from financial texts and obtain the polarity of a text towards such main economic target, other companies and society in general. To this end, we have compiled a novel of financial tweets and news headlines in Spanish, constituting a valuable resource for the Spanish-focused research community. In addition, we have carried out a performance comparison of different Spanish-specific large language models, with MarIA and BETO achieving the best results. Our best result has an overall performance of 76.04%, 74.16%, and 68.07% in macro F1-score for the sentiment classification towards the main economic target, society, and other companies, respectively, and an accuracy of 69.74% for target detection. We have also evaluated the performance of multi-label classification models in this context and obtained a performance of 71.13%.

摘要

如今,社交媒体上的金融数据在预测股票市场方面发挥着重要作用。然而,金融信息的指数级增长以及其他部门或利益相关者对同一信息可能存在的不同情绪极性,导致需要新技术来为每个利益相关者快速、轻松地自动收集和分类大量信息。在这种情况下,我们进行了有针对性的情绪分析,它可以自动从金融文本中提取主要经济目标,并获得文本对该主要经济目标、其他公司以及整个社会的极性。为此,我们汇编了一部西班牙语的金融推文和新闻标题集,为专注于西班牙语研究的社区提供了宝贵资源。此外,我们对不同的西班牙语特定大语言模型进行了性能比较,其中MarIA和BETO取得了最佳结果。我们的最佳结果在针对主要经济目标、社会和其他公司的情绪分类的宏观F1分数方面分别达到了76.04%、74.16%和68.07%的整体性能,目标检测的准确率为69.74%。我们还在此背景下评估了多标签分类模型的性能,获得了71.13%的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffc6/10280559/4bf5222e29bf/peerj-cs-09-1377-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验