Suppr超能文献

基于挤压与激励模块增强视觉Transformer对抗攻击的鲁棒性

Enhancing the robustness of vision transformer defense against adversarial attacks based on squeeze-and-excitation module.

作者信息

Chang YouKang, Zhao Hong, Wang Weijie

机构信息

School of Computer and Communication, Lanzhou University of Technology, LanZhou, GanSu, China.

出版信息

PeerJ Comput Sci. 2023 Jan 13;9:e1197. doi: 10.7717/peerj-cs.1197. eCollection 2023.

Abstract

Vision Transformer (ViT) models have achieved good results in computer vision tasks, their performance has been shown to exceed that of convolutional neural networks (CNNs). However, the robustness of the ViT model has been less studied recently. To address this problem, we investigate the robustness of the ViT model in the face of adversarial attacks, and enhance the robustness of the model by introducing the ResNet- SE module, which acts on the Attention module of the ViT model. The Attention module not only learns edge and line information, but also can extract increasingly complex feature information; ResNet-SE module highlights the important information of each feature map and suppresses the minor information, which helps the model to perform the extraction of key features. The experimental results show that the accuracy of the proposed defense method is 19.812%, 17.083%, 18.802%, 21.490%, and 18.010% against Basic Iterative Method (BIM), C&W, DeepFool, DIFGSM, and MDIFGSM attacks, respectively. The defense method in this paper shows strong robustness compared with several other models.

摘要

视觉Transformer(ViT)模型在计算机视觉任务中取得了良好的效果,其性能已被证明超过了卷积神经网络(CNN)。然而,ViT模型的鲁棒性最近研究较少。为了解决这个问题,我们研究了ViT模型在面对对抗攻击时的鲁棒性,并通过引入ResNet-SE模块来增强模型的鲁棒性,该模块作用于ViT模型的注意力模块。注意力模块不仅学习边缘和线条信息,还能提取日益复杂的特征信息;ResNet-SE模块突出每个特征图的重要信息并抑制次要信息,这有助于模型进行关键特征的提取。实验结果表明,所提出的防御方法针对基本迭代方法(BIM)、C&W、DeepFool、DIFGSM和MDIFGSM攻击的准确率分别为19.812%、17.083%、18.802%、21.490%和18.010%。与其他几个模型相比,本文中的防御方法表现出很强的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4096/10280230/27242aef9d56/peerj-cs-09-1197-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验