Suppr超能文献

MedViT:一种用于广义医学图像分类的鲁棒视觉Transformer。

MedViT: A robust vision transformer for generalized medical image classification.

机构信息

School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.

School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.

出版信息

Comput Biol Med. 2023 May;157:106791. doi: 10.1016/j.compbiomed.2023.106791. Epub 2023 Mar 14.

Abstract

Convolutional Neural Networks (CNNs) have advanced existing medical systems for automatic disease diagnosis. However, there are still concerns about the reliability of deep medical diagnosis systems against the potential threats of adversarial attacks since inaccurate diagnosis could lead to disastrous consequences in the safety realm. In this study, we propose a highly robust yet efficient CNN-Transformer hybrid model which is equipped with the locality of CNNs as well as the global connectivity of vision Transformers. To mitigate the high quadratic complexity of the self-attention mechanism while jointly attending to information in various representation subspaces, we construct our attention mechanism by means of an efficient convolution operation. Moreover, to alleviate the fragility of our Transformer model against adversarial attacks, we attempt to learn smoother decision boundaries. To this end, we augment the shape information of an image in the high-level feature space by permuting the feature mean and variance within mini-batches. With less computational complexity, our proposed hybrid model demonstrates its high robustness and generalization ability compared to the state-of-the-art studies on a large-scale collection of standardized MedMNIST-2D datasets.

摘要

卷积神经网络 (CNN) 已经为自动疾病诊断改进了现有的医疗系统。然而,由于不准确的诊断可能会在安全领域导致灾难性的后果,因此人们仍然对深度医疗诊断系统对对抗性攻击的可靠性存在担忧。在这项研究中,我们提出了一种高度鲁棒且高效的 CNN-Transformer 混合模型,该模型具有 CNN 的局部性以及视觉 Transformer 的全局连接性。为了减轻自注意力机制的高二次复杂度,同时在各种表示子空间中共同关注信息,我们通过有效的卷积操作来构建我们的注意力机制。此外,为了减轻我们的 Transformer 模型对对抗性攻击的脆弱性,我们试图学习更平滑的决策边界。为此,我们通过在小批量内排列特征均值和方差来增强图像在高级特征空间中的形状信息。与大规模的标准化 MedMNIST-2D 数据集的最先进研究相比,我们提出的混合模型具有较低的计算复杂度,展示了其较高的鲁棒性和泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验