Suppr超能文献

稳健化深度网络在医学图像分割中的应用。

Robustifying Deep Networks for Medical Image Segmentation.

机构信息

Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, USA.

Department of Radiology, University of Wisconsin, Madison, WI, USA.

出版信息

J Digit Imaging. 2021 Oct;34(5):1279-1293. doi: 10.1007/s10278-021-00507-5. Epub 2021 Sep 20.

Abstract

The purpose of this study is to investigate the robustness of a commonly used convolutional neural network for image segmentation with respect to nearly unnoticeable adversarial perturbations, and suggest new methods to make these networks more robust to such perturbations. In this retrospective study, the accuracy of brain tumor segmentation was studied in subjects with low- and high-grade gliomas. Two representative UNets were implemented to segment four different MR series (T1-weighted, post-contrast T1-weighted, T2-weighted, and T2-weighted FLAIR) into four pixelwise labels (Gd-enhancing tumor, peritumoral edema, necrotic and non-enhancing tumor, and background). We developed attack strategies based on the fast gradient sign method (FGSM), iterative FGSM (i-FGSM), and targeted iterative FGSM (ti-FGSM) to produce effective but imperceptible attacks. Additionally, we explored the effectiveness of distillation and adversarial training via data augmentation to counteract these adversarial attacks. Robustness was measured by comparing the Dice coefficients for the attacks using Wilcoxon signed-rank tests. The experimental results show that attacks based on FGSM, i-FGSM, and ti-FGSM were effective in reducing the quality of image segmentation by up to 65% in the Dice coefficient. For attack defenses, distillation performed significantly better than adversarial training approaches. However, all defense approaches performed worse compared to unperturbed test images. Therefore, segmentation networks can be adversely affected by targeted attacks that introduce visually minor (and potentially undetectable) modifications to existing images. With an increasing interest in applying deep learning techniques to medical imaging data, it is important to quantify the ramifications of adversarial inputs (either intentional or unintentional).

摘要

本研究旨在探究一种常用于图像分割的卷积神经网络对近不可察觉对抗性扰动的稳健性,并提出新的方法使这些网络更能抵御此类扰动。在这项回顾性研究中,研究了低级别和高级别脑胶质瘤患者的脑肿瘤分割准确性。实现了两个有代表性的 UNet 来分割四个不同的磁共振系列(T1 加权、对比后 T1 加权、T2 加权和 T2 加权 FLAIR)成四个像素级标签(钆增强肿瘤、瘤周水肿、坏死和非增强肿瘤、背景)。我们基于快速梯度符号法(FGSM)、迭代快速梯度符号法(i-FGSM)和目标迭代快速梯度符号法(ti-FGSM)开发了攻击策略,以产生有效但不可察觉的攻击。此外,我们通过数据扩充探索了蒸馏和对抗训练的有效性,以对抗这些对抗攻击。稳健性通过使用 Wilcoxon 符号秩检验比较攻击的 Dice 系数来衡量。实验结果表明,基于 FGSM、i-FGSM 和 ti-FGSM 的攻击在 Dice 系数上有效地降低了图像分割质量,最高可达 65%。对于攻击防御,蒸馏的效果明显优于对抗训练方法。然而,与未受干扰的测试图像相比,所有防御方法的效果都更差。因此,分割网络可能会受到目标攻击的不利影响,这些攻击会对现有图像引入视觉上较小(且可能无法察觉)的修改。随着对将深度学习技术应用于医学成像数据的兴趣日益增加,量化对抗性输入(无论是有意还是无意)的后果非常重要。

相似文献

1
Robustifying Deep Networks for Medical Image Segmentation.稳健化深度网络在医学图像分割中的应用。
J Digit Imaging. 2021 Oct;34(5):1279-1293. doi: 10.1007/s10278-021-00507-5. Epub 2021 Sep 20.
4
Gradient Correction for White-Box Adversarial Attacks.白盒对抗攻击的梯度校正
IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):18419-18430. doi: 10.1109/TNNLS.2023.3315414. Epub 2024 Dec 2.

本文引用的文献

3
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
4
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
5
Machine Learning in Medical Imaging.医学成像中的机器学习
IEEE Signal Process Mag. 2010 Jul;27(4):25-38. doi: 10.1109/MSP.2010.936730.
6
Machine learning and radiology.机器学习与放射学。
Med Image Anal. 2012 Jul;16(5):933-51. doi: 10.1016/j.media.2012.02.005. Epub 2012 Feb 23.
7
N4ITK: improved N3 bias correction.N4ITK:改进的 N3 偏置校正。
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20. doi: 10.1109/TMI.2010.2046908. Epub 2010 Apr 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验