一种基于混合脑电图的情感识别方法:使用小波卷积神经网络和支持向量机

A Hybrid EEG-based Emotion Recognition Approach Using Wavelet Convolutional Neural Networks and Support Vector Machine.

作者信息

Bagherzadeh Sara, Maghooli Keivan, Shalbaf Ahmad, Maghsoudi Arash

机构信息

Department of Biomedical Engineering, Sciences and Research Branch, Islamic Azad University, Tehran, Iran.

Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Basic Clin Neurosci. 2023 Jan-Feb;14(1):87-102. doi: 10.32598/bcn.2021.3133.1. Epub 2023 Jan 1.

Abstract

INTRODUCTION

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool, which makes the processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate.

METHODS

In this paper, a hybrid approach based on deep features extracted from wavelet CNNs (WCNNs) weighted layers and multiclass support vector machine (MSVM) was proposed to improve the recognition of emotional states from electroencephalogram (EEG) signals. First, EEG signals were preprocessed and converted to Time-Frequency (T-F) color representation or scalogram using the continuous wavelet transform (CWT) method. Then, scalograms were fed into four popular pre-trained CNNs, AlexNet, ResNet-18, VGG-19, and Inception-v3 to fine-tune them. Then, the best feature layer from each one was used as input to the MSVM method to classify four quarters of the valence-arousal model. Finally, the subject-independent leave-one-subject-out criterion was used to evaluate the proposed method on DEAP and MAHNOB-HCI databases.

RESULTS

Results showed that extracting deep features from the earlier convolutional layer of ResNet-18 (Res2a) and classifying using the MSVM increased the average accuracy, precision, and recall by about 20% and 12% for MAHNOB-HCI and DEAP databases, respectively. Also, combining scalograms from four regions of pre-frontal, frontal, parietal, and parietal-occipital and two regions of frontal and parietal achieved the higher average accuracy of 77.47% and 87.45% for MAHNOB-HCI and DEAP databases, respectively.

CONCLUSION

Combining CNN and MSVM increased the recognition of emotion from EEG signals and the results were comparable to state-of-the art studies.

摘要

引言

如今,深度学习和卷积神经网络(CNN)已成为许多生物医学工程研究中广泛使用的工具。CNN是一种端到端工具,它使处理过程一体化,但在某些情况下,这种处理工具需要与机器学习方法融合才能更准确。

方法

本文提出了一种基于从小波卷积神经网络(WCNN)加权层提取的深度特征和多类支持向量机(MSVM)的混合方法,以提高从脑电图(EEG)信号中识别情绪状态的能力。首先,对EEG信号进行预处理,并使用连续小波变换(CWT)方法将其转换为时频(T-F)彩色表示或尺度图。然后,将尺度图输入到四个流行的预训练CNN(AlexNet、ResNet-18、VGG-19和Inception-v3)中进行微调。然后,将每个网络的最佳特征层用作MSVM方法的输入,以对效价-唤醒模型的四个象限进行分类。最后,使用独立于受试者的留一受试者出准则在DEAP和MAHNOB-HCI数据库上评估所提出的方法。

结果

结果表明,从ResNet-18的早期卷积层(Res2a)提取深度特征并使用MSVM进行分类,对于MAHNOB-HCI和DEAP数据库,平均准确率、精确率和召回率分别提高了约20%和12%。此外,将前额叶、额叶、顶叶和顶枕叶四个区域以及额叶和顶叶两个区域的尺度图组合起来,对于MAHNOB-HCI和DEAP数据库,分别实现了77.47%和87.45%的更高平均准确率。

结论

将CNN和MSVM相结合提高了从EEG信号中识别情绪的能力,结果与现有研究相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ce7/10279985/6d9310e4a9ca/BCN-14-87-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索