Bagherzadeh Sara, Norouzi Mohammad Reza, Ghasri Amirhesam, Tolou Kouroshi Pouya, Bahri Hampa Sepideh, Farokhshad Fatemeh, Shalbaf Ahmad
Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Mirolab Inc., Tehran, Iran.
Sci Rep. 2025 May 23;15(1):18008. doi: 10.1038/s41598-025-02452-7.
Post-COVID-19, depression rates have risen sharply, increasing the need for early diagnosis using electroencephalogram (EEG) and deep learning. To tackle this, we developed a cloud-based computer-aided depression diagnostic (CCADD) system that utilizes EEG signals from local databases. This system was optimized through a series of experiments to identify the most accurate model. The experiments employed a pre-trained convolutional neural network, ResNet18, fine-tuned on time-frequency synchrosqueezed wavelet transform (SSWT) images derived from EEG signals. Various data augmentation methods, including image processing techniques and noises, were applied to identify the best model for CCADD. To offer this device with minimal electrodes, we aimed to balance high accuracy with fewer electrodes. Two publicly databases were evaluated using this approach. Dataset I included 31 individuals detected with major depressive disorder and a control class of 27 age-matched healthy subjects. Dataset II comprised 90 participants, with 45 diagnosed with depression and 45 healthy controls. The leave-subjects-out cross-validation method with 20 subjects was used to validate the proposed method. The highest average accuracies for the selected model are 98%, 97%, 91%, and 88% for the parietal and central lobes in Databases I and II, respectively. The corresponding highest f-scores are 96.27%, 94.87%, 90.56%, and 89.65%. The highest intra-database accuracy and F1-score are 75.10% and 73.56% when training with SSWT images from Database II and testing with parietal images from Database I. This study introduces a novel cloud-based model for depression detection, paving the way for effective diagnostic tools and potentially revolutionizing depression management.
新冠疫情后,抑郁症发病率急剧上升,这增加了使用脑电图(EEG)和深度学习进行早期诊断的需求。为了解决这个问题,我们开发了一种基于云的计算机辅助抑郁症诊断(CCADD)系统,该系统利用本地数据库中的EEG信号。通过一系列实验对该系统进行了优化,以确定最准确的模型。实验采用了预训练的卷积神经网络ResNet18,并在从EEG信号导出的时频同步挤压小波变换(SSWT)图像上进行了微调。应用了各种数据增强方法,包括图像处理技术和噪声,以确定CCADD的最佳模型。为了用最少的电极提供这种设备,我们旨在在较少电极的情况下实现高精度。使用这种方法对两个公开数据库进行了评估。数据集I包括31名被检测出患有重度抑郁症的个体和27名年龄匹配的健康对照者组成的对照组。数据集II包括90名参与者,其中45名被诊断为抑郁症,45名健康对照者。使用留一法交叉验证方法(20名受试者)对所提出的方法进行验证。所选模型在数据库I和II中顶叶和中央叶的最高平均准确率分别为98%、97%、91%和88%。相应的最高F分数分别为96.27%、94.87%、90.56%和89.65%。当使用来自数据库II的SSWT图像进行训练并使用来自数据库I的顶叶图像进行测试时,数据库内的最高准确率和F1分数分别为75.10%和73.56%。本研究介绍了一种用于抑郁症检测的新型基于云的模型,为有效的诊断工具铺平了道路,并可能彻底改变抑郁症的管理方式。