State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Appl Mater Interfaces. 2023 Jul 5;15(26):31954-31965. doi: 10.1021/acsami.3c04213. Epub 2023 Jun 22.
Flexible III-nitride-based optoelectronic devices are crucial for the next-generation foldable/wearable lighting sterilization and sensor working in the ultraviolet (UV) region. However, the strong bonding effect at the epitaxial interface of III-nitride and bare sapphire substrate makes it difficult for epilayer separation and flexible applications. Although the emerging van der Waals epitaxy (vdWE) with graphene insertion layer offers a feasible route for weakening the interfacial adhesion, the intact centimeter-transferable III-nitride membrane still remains challenging. The spontaneous delamination occurs due to the too weak interfacial adhesion of pure vdW force, and on the contrary, the structural damage of graphene by high-temperature hydrogen etching during the III-nitride growth might also cause separation failure. Up to now, the efficient control of vdWE interfacial adhesion is still an on-going research hotspot. Herein, we demonstrate the interfacial adhesion control of III-nitride vdWE by utilizing graded high-temperature nitridation treatment of the graphene insertion layer, which generates defects and N doping in different levels. The corresponding epitaxial modes of pure-vdWE, quasi-vdWE, and mixed epitaxy are achieved according to the interfacial adhesion difference. It reveals that the quasi-vdWE enabled by small graphene defects and proper N doping triggers the low formation energy for AlN nucleation; meanwhile, the proper interfacial adhesion ensures the growth integrality and intact separation of III-nitride membrane in the centimeter scale. The UV resin-assisted bonding technique is proposed for the successful transfer of III-nitride onto a flexible substrate. The flexible photodetector is fabricated by using a graphene monolayer as the photocarrier transport channel, and it achieves a high device yield of 90%, retaining ∼60% of its initial performance after 250 bending cycles. This work offers the promising strategy for controlling vdWE interfacial adhesion, and the separable and transferable III-nitride membrane lays the foundation for advances of future UV foldable and wearable devices.
基于 III 族氮化物的柔性光电设备对于下一代可折叠/可穿戴式紫外线 (UV) 区域照明消毒和传感器至关重要。然而,III 族氮化物和裸露蓝宝石衬底的外延界面上的强键合效应使得外延层分离和柔性应用变得困难。尽管新兴的范德华外延 (vdWE) 结合插入石墨烯层提供了一种减弱界面附着力的可行途径,但完整的厘米级可转移 III 族氮化物膜仍然具有挑战性。由于纯范德华力的界面附着力太弱,自发分层会发生,而在 III 族氮化物生长过程中高温氢刻蚀会导致石墨烯结构损坏,这也可能导致分离失败。到目前为止,有效控制 vdWE 界面附着力仍然是一个正在进行的研究热点。在此,我们通过利用石墨烯插入层的分级高温氮化处理来控制 III 族氮化物 vdWE 的界面附着力,该处理会在不同水平上产生缺陷和 N 掺杂。根据界面附着力的差异,实现了纯 vdWE、准 vdWE 和混合外延的外延模式。结果表明,小石墨烯缺陷和适当 N 掺杂引起的准 vdWE 触发了 AlN 成核的低形成能;同时,适当的界面附着力确保了 III 族氮化物膜在厘米范围内的生长完整性和完整分离。提出了 UV 树脂辅助键合技术,用于将 III 族氮化物成功转移到柔性衬底上。通过使用单层石墨烯作为光载流子输运通道来制造柔性光电探测器,它实现了 90%的高器件产率,在 250 次弯曲循环后保留了初始性能的约 60%。这项工作为控制 vdWE 界面附着力提供了有前途的策略,可分离和可转移的 III 族氮化物膜为未来 UV 可折叠和可穿戴设备的发展奠定了基础。